Mostrar el registro sencillo del ítem
dc.contributor.author | Izal, Iñigo | es_ES |
dc.contributor.author | Aranda, Pablo | es_ES |
dc.contributor.author | Sanz Ramos, Patricia | es_ES |
dc.contributor.author | Ripalda, Purificacion | es_ES |
dc.contributor.author | Mora, Gonzalo | es_ES |
dc.contributor.author | Granero Molto, Froilan | es_ES |
dc.contributor.author | Deplaine, Harmony | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Gallego-Ferrer, Gloria | es_ES |
dc.contributor.author | Acosta, Victor | es_ES |
dc.contributor.author | Ochoa, Ignacio | es_ES |
dc.contributor.author | García Aznar, Manuel | es_ES |
dc.contributor.author | Andreu, Enrique J. | es_ES |
dc.contributor.author | Monleón Pradas, Manuel | es_ES |
dc.contributor.author | Doblare Castellano, Manuel | es_ES |
dc.contributor.author | Prosper, Felipe | es_ES |
dc.date.accessioned | 2016-05-17T08:21:46Z | |
dc.date.available | 2016-05-17T08:21:46Z | |
dc.date.issued | 2013-08 | |
dc.identifier.issn | 0942-2056 | |
dc.identifier.uri | http://hdl.handle.net/10251/64199 | |
dc.description.abstract | Due to the attractive properties of poly(l-lactic acid) (PLLA) for tissue engineering, the aim was to determine the growth and differentiation capacity of mesenchymal stromal cells (MSCs) in PLLA scaffolds and their potential use in the treatment of cartilage diseases. MSCs were cultured in PLLA films and thin porous membranes to study adherence and proliferation. Permeability and porosity were determined for the different scaffolds employed. The optimal conditions for cell seeding were first determined, as well as cell density and distribution inside the PLLA. Scaffolds were then maintained in expansion or chondrogenic differentiation media for 21 days. Apoptosis, proliferation and chondrogenic differentiation was assessed after 21 days in culture by immunohistochemistry. Mechanical characteristics of scaffolds were determined before and after cell seeding. MSCs uniformly adhered to PLLA films as well as to porous membranes. Proliferation was detected only in monolayers of pure PLLA, but was no longer detected after 10 days. Mechanical characterization of PLLA scaffolds showed differences in the apparent compression elastic modulus for the two sizes used. After determining high efficiencies of seeding, the production of extracellular matrix (ECM) was determined and contained aggrecan and collagens type I and X. ECM produced by the cells induced a twofold increase in the apparent elastic modulus of the composite. Biocompatible PLLA scaffolds have been developed that can be efficiently loaded with MSCs. The scaffold supports chondrogenic differentiation and ECM deposition that improves the mechanics of the scaffold. Although this improvement does not met the expectations of a hyaline-like cartilage ECM, in part due to the lack of a mechanical stimulation, their potential use in the treatment of cartilage pathologies encourages to improve the mechanical component. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministry of Science and Innovation DPI2010-20399-C04-00 project and Instituto de Salud Carlos III RETIC RD06/0014. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag | es_ES |
dc.relation.ispartof | Knee Surgery, Sports Traumatology, Arthroscopy | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Tissue engineering | es_ES |
dc.subject | Chondrocyte differentiation | es_ES |
dc.subject | PLLA scaffolds | es_ES |
dc.subject | Mesenchymal stem cells | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Culture of human bone marrow-derived mesenchymal stem cells on of poly(L-lactic acid) scaffolds: potential application for the tissue engineering of cartilage | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00167-012-2148-6 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-04/ES/DISEÑO, CONSTRUCCION Y VALIDACION DE UNA PLATAFORMA BIOMIMETICA PARA LA EVALUACION FUNCIONAL Y OPTIMIZACION DE CONSTRUCTOS DE INGENIERIA TISULAR PARA LA REPARACION DE CARTILAG/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-03/ES/DISEÑO Y FABRICACION DE UNA PLATAFORMA BIOMIMETICA TIPO SCAFFOLD%2FSOPORTE PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MSC//RD06%2F0014/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-01/ES/DISEÑO, CONSTRUCCION Y VALIDACION DE UNA PLATAFORMA BIOMIMETICA PARA LA EVALUACION FUNCIONAL Y OPTIMIZACION DE CONSTRUCTOS DE INGENIERIA TISULAR DE CARTILAGO ARTICULAR/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.description.bibliographicCitation | Izal, I.; Aranda, P.; Sanz Ramos, P.; Ripalda, P.; Mora, G.; Granero Molto, F.; Deplaine, H.... (2013). Culture of human bone marrow-derived mesenchymal stem cells on of poly(L-lactic acid) scaffolds: potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy. 21(8):1737-1750. https://doi.org/10.1007/s00167-012-2148-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00167-012-2148-6 | es_ES |
dc.description.upvformatpinicio | 1737 | es_ES |
dc.description.upvformatpfin | 1750 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 260189 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Sanidad y Consumo | es_ES |
dc.description.references | Alberich-Bayarri A, Moratal D, Ivirico JL, Rodriguez-Hernandez JC, Valles-Lluch A, Marti-Bonmati L, Estelles JM, Mano JF, Pradas MM, Ribelles JL, Salmeron-Sanchez M (2009) Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. J Biomed Mater Res B Appl Biomater 91:191–202 | es_ES |
dc.description.references | Aranda P, Agirre X, Ballestar E, Andreu EJ, Roman-Gomez J, Prieto I, Martin-Subero JI, Cigudosa JC, Siebert R, Esteller M, Prosper F (2009) Epigenetic signatures associated with different levels of differentiation potential in human stem cells. PLoS One 4:e7809 | es_ES |
dc.description.references | Bentley G, Biant LC, Vijayan S, Macmull S, Skinner JA, Carrington RW (2012) Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Br 94:504–509 | es_ES |
dc.description.references | Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224 | es_ES |
dc.description.references | Breinan HA, Minas T, Hsu HP, Nehrer S, Shortkroff S, Spector M (2001) Autologous chondrocyte implantation in a canine model: change in composition of reparative tissue with time. J Orthop Res 19:482–492 | es_ES |
dc.description.references | Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895 | es_ES |
dc.description.references | Bryant SJ, Anseth KS (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res 59:63–72 | es_ES |
dc.description.references | Budyanto L, Goh YQ, Ooi CP (2009) Fabrication of porous poly(l-lactide) (PLLA) scaffolds for tissue engineering using liquid–liquid phase separation and freeze extraction. J Mater Sci Mater Med 20:105–111 | es_ES |
dc.description.references | Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127 | es_ES |
dc.description.references | Chen Y, Cho MR, Mak AF, Li JS, Wang M, Sun S (2008) Morphology and adhesion of mesenchymal stem cells on PLLA, apatite and apatite/collagen surfaces. J Mater Sci Mater Med 19:2563–2567 | es_ES |
dc.description.references | Dar A, Shachar M, Leor J, Cohen S (2002) Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 80:305–312 | es_ES |
dc.description.references | Deng Y, Zhao K, Zhang XF, Hu P, Chen GQ (2002) Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 23:4049–4056 | es_ES |
dc.description.references | Duance VC (1983) Surface of articular cartilage: immunohistological studies. Cell Biochem Funct 1:143–144 | es_ES |
dc.description.references | Eerola I, Salminen H, Lammi P, Lammi M, von der Mark K, Vuorio E, Säämänen AM (1998) Type X collagen, a natural component of mouse articular cartilage: association with growth, aging, and osteoarthritis. Arthritis Rheum 41:1287–1295 | es_ES |
dc.description.references | Filardo G, Kon E, Di Martino A, Iacono F, Marcacci M (2011) Arthroscopic second-generation autologous chondrocyte implantation: a prospective 7-year follow-up study. Am J Sports Med 39:2153–2160 | es_ES |
dc.description.references | Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R (1993) Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 27:11–23 | es_ES |
dc.description.references | Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Nat Biotechnol 12:689–693 | es_ES |
dc.description.references | Gong Y, He L, Li J, Zhou Q, Ma Z, Gao C, Shen J (2007) Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 82:192–204 | es_ES |
dc.description.references | Guo JF, Jourdian GW, Maccallum DK (1989) Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res 19:277–297 | es_ES |
dc.description.references | Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138 | es_ES |
dc.description.references | Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, Wilke EN, Van Lenthe GH, Müller R, Wirtz T, Das S, Feinberg SE, Krebsbach PH (2005) Engineering craniofacial scaffolds. Orthod Craniofac Res 8:162–173 | es_ES |
dc.description.references | Holtzer H, Abbott J, Lash J, Holtzer S (1960) The loss of phenotypic traits by differentiated cells in vitro, I. Dedifferentiation of cartilage cells. Proc Natl Acad Sci USA 46:1533–1542 | es_ES |
dc.description.references | Hsu SH, Tsai CL, Tang CM (2002) Evaluation of cellular affinity and compatibility to biodegradable polyesters and type-II collagen-modified scaffolds using immortalized rat chondrocytes. Artif Organs 26:647–658 | es_ES |
dc.description.references | Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312 | es_ES |
dc.description.references | Jeong CG, Hollister SJ (2010) Mechanical and biochemical assessments of three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on in vitro chondrogenesis using primary chondrocytes. Tissue Eng Part A 16:3759–3768 | es_ES |
dc.description.references | Jeong CG, Zhang H, Hollister SJ (2011) Three-dimensional poly(1,8-octanediol-co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes. Acta Biomater 7:505–514 | es_ES |
dc.description.references | Kemppainen JM, Hollister SJ (2010) Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials 31:279–287 | es_ES |
dc.description.references | Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926 | es_ES |
dc.description.references | Lebourg M, Suay Antón J, Gómez Ribelles J (2008) Porous membranes of PLLA–PCL blend for tissue engineering applications. Eur Polymer J 44:2207–2218 | es_ES |
dc.description.references | Lee CR, Breinan HA, Nehrer S, Spector M (2000) Articular cartilage chondrocytes in type I and type II collagen-GAG matrices exhibit contractile behavior in vitro. Tissue Eng 6:555–565 | es_ES |
dc.description.references | Lee DA, Bentley G, Archer CW (1993) The control of cell division in articular chondrocytes. Osteoarthritis Cartilage 1:137–146 | es_ES |
dc.description.references | Lee DA, Reisler T, Bader DL (2003) Expansion of chondrocytes for tissue engineering in alginate beads enhances chondrocytic phenotype compared to conventional monolayer techniques. Acta Orthop Scand 74:6–15 | es_ES |
dc.description.references | Lennon DP, Haynesworth SE, Arm DM, Baber MA, Caplan AI (2000) Dilution of human mesenchymal stem cells with dermal fibroblasts and the effects on in vitro and in vivo osteochondrogenesis. Dev Dyn 219:50–62 | es_ES |
dc.description.references | Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2005) A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599–609 | es_ES |
dc.description.references | Ma Z, Gao C, Gong Y, Shen J (2005) Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 26:1253–1259 | es_ES |
dc.description.references | Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4:415–428 | es_ES |
dc.description.references | Marijnissen WJ, Van Osch GJ, Aigner J, van der Veen SW, Hollander AP, Verwoerd-Verhoef HL, Verhaar JA (2002) Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials 23:1511–1517 | es_ES |
dc.description.references | Mayne R, Vail MS, Mayne PM, Miller EJ (1976) Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci USA 73:1674–1678 | es_ES |
dc.description.references | Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394 | es_ES |
dc.description.references | Ochoa I, Sanz-Herrera JA, Garcia-Aznar JM, Doblare M, Yunos DM, Boccaccini AR (2009) Permeability evaluation of 45S5 bioglass-based scaffolds for bone tissue engineering. J Biomech 42:257–260 | es_ES |
dc.description.references | Parkkinen JJ, Lammi MJ, Helminen HJ, Tammi M (1992) Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res 10:610–620 | es_ES |
dc.description.references | Pérez Olmedilla M, Lebourg M, Escobar Ivirico JL, Nebot I, Garcia Giralt N, Gallego Ferrer G, Soria JM, Gómez Ribelles JL (2011) In vitro 3D culture of human chondrocytes using modified ε-caprolactone scaffolds with varying hydrophilicity and porosity. J Biomater Appl. doi: 10.1177/0885328211404263 | es_ES |
dc.description.references | Perez-Ilzarbe M, Diez-Campelo M, Aranda P, Tabera S, Lopez T, Del Cañizo C, Merino J, Moreno C, Andreu EJ, Prosper F, Perez-Simon JA (2009) Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy. Transfusion 49:1901–1910 | es_ES |
dc.description.references | Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38:1117–1124 | es_ES |
dc.description.references | Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147 | es_ES |
dc.description.references | Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440 | es_ES |
dc.description.references | Rotter N, Bucheler M, Haisch A, Wollenberg B, Lang S (2007) Cartilage tissue engineering using resorbable scaffolds. J Tissue Eng Regen Med 1:411–416 | es_ES |
dc.description.references | Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7:619–636 | es_ES |
dc.description.references | Saini S, Wick TM (2003) Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol Prog 19:510–521 | es_ES |
dc.description.references | Shastri VP, Martin I, Langer R (2000) Macroporous polymer foams by hydrocarbon templating. Proc Natl Acad Sci USA 97:1970–1975 | es_ES |
dc.description.references | Sherwooda JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold or articular cartilage repair. Biomaterials 23:4739–4751 | es_ES |
dc.description.references | Shieh AC, Athanasiou KA (2003) Principles of cell mechanics for cartilage tissue engineering. Ann Biomed Eng 31:1–11 | es_ES |
dc.description.references | Stenhamre H, Nannmark U, Lindahl A, Gatenholm P, Brittberg MJ (2010) Influence of pore size on the redifferentiation potential of human articular chondrocytes in poly(urethane urea) scaffolds. Tissue Eng Regen Med 5:578–588 | es_ES |
dc.description.references | Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440 | es_ES |
dc.description.references | Thorogood P, Bee J, Von Der Mark K (1986) Transient expression of collagen type II at epitheliomesenchymal interfaces during morphogenesis of the cartilaginous neurocranium. Dev Biol 116:497–509 | es_ES |
dc.description.references | Tsai WB, Chen CH, Chen JF, Chang KY (2006) The effects of types of degradable polymers on porcine chondrocyte adhesion, proliferation and gene expression. J Mater Sci Mater Med 17:337–343 | es_ES |
dc.description.references | Von Der Mark K, Gauss V, Von Der Mark H, Muller P (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267:531–532 | es_ES |
dc.description.references | Weir NA, Buchanan FJ, Orr JF, Dickson GR (2004) Degradation of poly-l-lactide. Part 1: in vitro and in vivo physiological temperature degradation. Proc Inst Mech Eng [H] 218:307–319 | es_ES |
dc.description.references | Yamane S, Iwasaki N, Kasahara Y, Harada K, Majima T, Monde K, Nishimura SI, Minami A (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res A 81:586–593 | es_ES |
dc.description.references | Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572 | es_ES |