- -

Influence of electrospinning parameters on Poly(hydroxybutyrate) electrospun membranes fiber size and distribution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of electrospinning parameters on Poly(hydroxybutyrate) electrospun membranes fiber size and distribution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Correia, Daniela M. es_ES
dc.contributor.author Ribeiro, Clarisse es_ES
dc.contributor.author Ferreira, Jose C. C. es_ES
dc.contributor.author Botelho, Gabriela es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lanceros Mendez, Senen es_ES
dc.contributor.author Sencadas, Vitor es_ES
dc.date.accessioned 2016-05-17T09:14:06Z
dc.date.available 2016-05-17T09:14:06Z
dc.date.issued 2014-07
dc.identifier.issn 0032-3888
dc.identifier.uri http://hdl.handle.net/10251/64208
dc.description.abstract Poly(hydroxybutyrate) (PHB) obtained from sugar cane waste was dissolved in a blend of chloroform and dimethylformamide (DMF) and electrospun at 40 degrees C. By adding DMF to the solution, the electrospinning process for the PHB polymer becomes more stable, allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. The influence of processing parameters on fiber size and distribution was systematically studied. It was observed that an increase of tip inner diameter promotes a decrease of the fiber average size and a broader distribution. Conversely, an increase of the electric field and flow rate produces an increase of fiber diameter until a maximum of similar to 2.0 mu m but for electric fields higher than 1.5 kV cm(-1), a decrease of the fiber diameter was observed. Polymer crystalline phase seems to be independent of the processing conditions and a crystallinity degree of 53% was found. Moreover, thermal degradation of the as-spun membrane occurs in single step degradation with activation energy of 91 kJ mol(-1). Furthermore, MC-3T3-E1 cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications. es_ES
dc.description.sponsorship Contract grant sponsor: FEDER; contract grant sponsor: Programa Operacional Factores de Competitividade-COMPETE; contract grant sponsor: FCT-Fundacao para a Ciencia e a Tecnologia; contract grant numbers: NANO/NMed-SD/0156/2007, PTDC/CTM/73030/2006, and PTDC/CTM/69316/2006; contract grant sponsor: COST Action MP1003, 2010 'European Scientific Network for Artificial Muscles'; contract grant sponsor: FCT; contract grant numbers: SFRH/BPD/63148/2009 and SFRH/BD/82411/2011; contract grant sponsor: IINL; contract grant sponsor: Spanish Ministry of Science and Innovation (including the FEDER financial support); contract grant number: MAT2010-21611-C03-01; contract grant sponsors: VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, and Instituto de Salud Carlos III (with assistance from the European Regional Development Fund). en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Polymer Engineering and Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject THERMOGRAVIMETRIC DATA es_ES
dc.subject POLYHYDROXYBUTYRATE es_ES
dc.subject MORPHOLOGY es_ES
dc.subject SCAFFOLDS es_ES
dc.subject BLENDS es_ES
dc.subject POLY(3-HYDROXYBUTYRATE) es_ES
dc.subject MATS es_ES
dc.subject POLY(3-HYDROXYBUTYRATE-CO-3-HYDROXYVALERATE) es_ES
dc.subject POLYHYDROXYALKANOATES es_ES
dc.subject BIOCOMPATIBILITY es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Influence of electrospinning parameters on Poly(hydroxybutyrate) electrospun membranes fiber size and distribution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pen.23704
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BPD/63148/2009/PT/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BD/82411/2011/PT/
dc.relation.projectID info:eu-repo/grantAgreement/COST//MP1003/EU/European Scientific Network for Artificial Muscles (ESNAM)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/73030/PT/Polarization-driven self-assembly of organic and biomaterials using ferroelectric polymers/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/69316/PT/Multiferroic, magnetoelectric and metallic micro and nanocomposites based on electroactive polymers for advanced applications/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/POCI/39723/PT/Component Technology Software Applied to Power Systems/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Correia, DM.; Ribeiro, C.; Ferreira, JCC.; Botelho, G.; Gómez Ribelles, JL.; Lanceros Mendez, S.; Sencadas, V. (2014). Influence of electrospinning parameters on Poly(hydroxybutyrate) electrospun membranes fiber size and distribution. Polymer Engineering and Science. 54(7):1608-1617. https://doi.org/10.1002/pen.23704 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/pen.23704 es_ES
dc.description.upvformatpinicio 1608 es_ES
dc.description.upvformatpfin 1617 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 284982 es_ES
dc.identifier.eissn 1548-2634
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Langer, R., & Vacanti, J. (1993). Tissue engineering. Science, 260(5110), 920-926. doi:10.1126/science.8493529 es_ES
dc.description.references Khorasani, M. T., Mirmohammadi, S. A., & Irani, S. (2011). Polyhydroxybutyrate (PHB) Scaffolds as a Model for Nerve Tissue Engineering Application: Fabrication and In Vitro Assay. International Journal of Polymeric Materials, 60(8), 562-575. doi:10.1080/00914037.2010.531809 es_ES
dc.description.references Sombatmankhong, K., Sanchavanakit, N., Pavasant, P., & Supaphol, P. (2007). Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend. Polymer, 48(5), 1419-1427. doi:10.1016/j.polymer.2007.01.014 es_ES
dc.description.references Wróbel, M., Zebrowski, J., & Szopa, J. (2004). Polyhydroxybutyrate synthesis in transgenic flax. Journal of Biotechnology, 107(1), 41-54. doi:10.1016/j.jbiotec.2003.10.005 es_ES
dc.description.references Ali, A. Q., Kannan, T. P., Ahmad, A., & Samsudin, A. R. (2008). In vitro genotoxicity tests for polyhydroxybutyrate – A synthetic biomaterial. Toxicology in Vitro, 22(1), 57-67. doi:10.1016/j.tiv.2007.08.001 es_ES
dc.description.references Gouda, M. K., Swellam, A. E., & Omar, S. H. (2001). Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiological Research, 156(3), 201-207. doi:10.1078/0944-5013-00104 es_ES
dc.description.references Reis, K. C., Pereira, J., Smith, A. C., Carvalho, C. W. P., Wellner, N., & Yakimets, I. (2008). Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. Journal of Food Engineering, 89(4), 361-369. doi:10.1016/j.jfoodeng.2008.04.022 es_ES
dc.description.references Dias, M., Antunes, M. C. M., Santos, A. R., & Felisberti, M. I. (2008). Blends of poly(3-hydroxybutyrate) and poly(p-dioxanone): miscibility, thermal stability and biocompatibility. Journal of Materials Science: Materials in Medicine, 19(12), 3535-3544. doi:10.1007/s10856-008-3531-1 es_ES
dc.description.references Asran, A. S., Razghandi, K., Aggarwal, N., Michler, G. H., & Groth, T. (2010). Nanofibers from Blends of Polyvinyl Alcohol and Polyhydroxy Butyrate As Potential Scaffold Material for Tissue Engineering of Skin. Biomacromolecules, 11(12), 3413-3421. doi:10.1021/bm100912v es_ES
dc.description.references Wang, Y.-W., Wu, Q., Chen, J., & Chen, G.-Q. (2005). Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials, 26(8), 899-904. doi:10.1016/j.biomaterials.2004.03.035 es_ES
dc.description.references Nivison-Smith, L., Rnjak, J., & Weiss, A. S. (2010). Synthetic human elastin microfibers: Stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomaterialia, 6(2), 354-359. doi:10.1016/j.actbio.2009.08.011 es_ES
dc.description.references Sombatmankhong, K., Suwantong, O., Waleetorncheepsawat, S., & Supaphol, P. (2006). Electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and their blends. Journal of Polymer Science Part B: Polymer Physics, 44(19), 2923-2933. doi:10.1002/polb.20915 es_ES
dc.description.references Sangsanoh, P., Waleetorncheepsawat, S., Suwantong, O., Wutticharoenmongkol, P., Weeranantanapan, O., Chuenjitbuntaworn, B., … Supaphol, P. (2007). In Vitro Biocompatibility of Schwann Cells on Surfaces of Biocompatible Polymeric Electrospun Fibrous and Solution-Cast Film Scaffolds. Biomacromolecules, 8(5), 1587-1594. doi:10.1021/bm061152a es_ES
dc.description.references Fryczkowski, R., & Kowalczyk, T. (2009). Nanofibres from polyaniline/polyhydroxybutyrate blends. Synthetic Metals, 159(21-22), 2266-2268. doi:10.1016/j.synthmet.2009.09.008 es_ES
dc.description.references Rodrigues, M. F. A., da Silva, L. F., Gomez, J. G. C., Valentin, H. E., & Steinbüchel, A. (1995). Biosynthesis of poly (3-hydroxybutyric acidco-3-hydroxy-4-pentenoic acid) from unrelated substrates byBurkholderia sp. Applied Microbiology and Biotechnology, 43(5), 880-886. doi:10.1007/bf02431923 es_ES
dc.description.references S. Ramakrishna K. Fujihara W.-E. Teo T.-C. Lim and Z. Ma An Introduction to Electrospinning and Nanofibers, World Scientific 2005 es_ES
dc.description.references Ribeiro, C., Sencadas, V., Ribelles, J. L. G., & Lanceros-Méndez, S. (2010). Influence of Processing Conditions on Polymorphism and Nanofiber Morphology of Electroactive Poly(vinylidene fluoride) Electrospun Membranes. Soft Materials, 8(3), 274-287. doi:10.1080/1539445x.2010.495630 es_ES
dc.description.references Wang, C., Cheng, Y.-W., Hsu, C.-H., Chien, H.-S., & Tsou, S.-Y. (2010). How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?—a brief discussion of solution electrospinning process. Journal of Polymer Research, 18(1), 111-123. doi:10.1007/s10965-010-9397-1 es_ES
dc.description.references Qin, X.-H., Wan, Y.-Q., He, J.-H., Zhang, J., Yu, J.-Y., & Wang, S.-Y. (2004). Effect of LiCl on electrospinning of PAN polymer solution: theoretical analysis and experimental verification. Polymer, 45(18), 6409-6413. doi:10.1016/j.polymer.2004.06.031 es_ES
dc.description.references Zhao, S., Wu, X., Wang, L., & Huang, Y. (2003). Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions. Journal of Applied Polymer Science, 91(1), 242-246. doi:10.1002/app.13196 es_ES
dc.description.references Gao, K., Hu, X., Dai, C., & Yi, T. (2006). Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Materials Science and Engineering: B, 131(1-3), 100-105. doi:10.1016/j.mseb.2006.03.035 es_ES
dc.description.references Demir, M. ., Yilgor, I., Yilgor, E., & Erman, B. (2002). Electrospinning of polyurethane fibers. Polymer, 43(11), 3303-3309. doi:10.1016/s0032-3861(02)00136-2 es_ES
dc.description.references Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 35(22), 8456-8466. doi:10.1021/ma020444a es_ES
dc.description.references Sencadas, V., Correia, D. M., Areias, A., Botelho, G., Fonseca, A. M., Neves, I. C., … Lanceros Mendez, S. (2012). Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers, 87(2), 1295-1301. doi:10.1016/j.carbpol.2011.09.017 es_ES
dc.description.references Ribeiro, C., Sencadas, V., Costa, C. M., Gómez Ribelles, J. L., & Lanceros-Méndez, S. (2011). Tailoring the morphology and crystallinity of poly(L-lactide acid) electrospun membranes. Science and Technology of Advanced Materials, 12(1), 015001. doi:10.1088/1468-6996/12/1/015001 es_ES
dc.description.references Mo, X. ., Xu, C. ., Kotaki, M., & Ramakrishna, S. (2004). Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials, 25(10), 1883-1890. doi:10.1016/j.biomaterials.2003.08.042 es_ES
dc.description.references Tong, H.-W., & Wang, M. (2011). Electrospinning of Poly(Hydroxybutyrate-co-hydroxyvalerate) Fibrous Scaffolds for Tissue Engineering Applications: Effects of Electrospinning Parameters and Solution Properties. Journal of Macromolecular Science, Part B, 50(8), 1535-1558. doi:10.1080/00222348.2010.541008 es_ES
dc.description.references Kemnitzer, J. E., Gross, R. A., McCarthy, S. P., Liggat, J., Blundell, D. J., & Cox, M. (1995). Crystallization behavior of predominantly syndiotactic poly(β-hydroxybutyrate). Journal of Environmental Polymer Degradation, 3(1), 37-47. doi:10.1007/bf02067792 es_ES
dc.description.references Xu, S., Luo, R., Wu, L., Xu, K., & Chen, G.-Q. (2006). Blending and characterizations of microbial poly(3-hydroxybutyrate) with dendrimers. Journal of Applied Polymer Science, 102(4), 3782-3790. doi:10.1002/app.24742 es_ES
dc.description.references D’Amico, D. A., Manfredi, L. B., & Cyras, V. P. (2011). Relationship between thermal properties, morphology, and crystallinity of nanocomposites based on polyhydroxybutyrate. Journal of Applied Polymer Science, 123(1), 200-208. doi:10.1002/app.34457 es_ES
dc.description.references Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328. doi:10.1002/pol.1966.110040504 es_ES
dc.description.references Ozawa, T. (1965). A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. doi:10.1246/bcsj.38.1881 es_ES
dc.description.references Morikawa, H., & Marchessault, R. H. (1981). Pyrolysis of bacterial polyalkanoates. Canadian Journal of Chemistry, 59(15), 2306-2313. doi:10.1139/v81-334 es_ES
dc.description.references Ballistreri, A., Garozzo, D., Giuffrida, M., Impallomeni, G., & Montaudo, G. (1989). Analytical degradation: An approach to the structural analysis of microbial polyesters by different methods. Journal of Analytical and Applied Pyrolysis, 16(3), 239-253. doi:10.1016/0165-2370(89)80028-2 es_ES
dc.description.references Kawalec, M., Adamus, G., Kurcok, P., Kowalczuk, M., Foltran, I., Focarete, M. L., & Scandola, M. (2007). Carboxylate-Induced Degradation of Poly(3-hydroxybutyrate)s. Biomacromolecules, 8(4), 1053-1058. doi:10.1021/bm061155n es_ES
dc.description.references Zhang, D. ., Cui, F. ., Luo, Z. ., Lin, Y. ., Zhao, K., & Chen, G. . (2000). Wettability improvement of bacterial polyhydroxyalkanoates via ion implantation. Surface and Coatings Technology, 131(1-3), 350-354. doi:10.1016/s0257-8972(00)00810-0 es_ES
dc.description.references Areias, A. C., Ribeiro, C., Sencadas, V., Garcia-Giralt, N., Diez-Perez, A., Gómez Ribelles, J. L., & Lanceros-Méndez, S. (2012). Influence of crystallinity and fiber orientation on hydrophobicity and biological response of poly(l-lactide) electrospun mats. Soft Matter, 8(21), 5818. doi:10.1039/c2sm25557j es_ES
dc.description.references Chen, G.-Q., & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26(33), 6565-6578. doi:10.1016/j.biomaterials.2005.04.036 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem