Mostrar el registro sencillo del ítem
dc.contributor.author | Álvaro Muñoz, Francisco | es_ES |
dc.contributor.author | Cruz Fernández, Francisco | es_ES |
dc.contributor.author | Sánchez Peiró, Joan Andreu | es_ES |
dc.contributor.author | Ramos Terrades, Oriol | es_ES |
dc.contributor.author | Benedí Ruiz, José Miguel | es_ES |
dc.date.accessioned | 2016-05-17T09:36:35Z | |
dc.date.available | 2016-05-17T09:36:35Z | |
dc.date.issued | 2015-02-20 | |
dc.identifier.issn | 0925-2312 | |
dc.identifier.uri | http://hdl.handle.net/10251/64215 | |
dc.description.abstract | [EN] In this paper we define a bidimensional extension of stochastic context-free grammars for structure detection and segmentation of images of documents. Two sets of text classification features are used to perform an initial classification of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for probabilistic graphical models and the results showed that the proposed grammatical model outperformed the other methods. Furthermore, grammars also provide the document structure along with its segmentation. & 2014 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | Work is partially supported by the Spanish MEC under the STraDA Research Project (TIN2012-37475-C02-01), the Spanish Project 2010-CONES-00029, the FPU Grant (AP2009-4363), and through the EU 7th Framework Programme Grant tranScriptorium (Ref: 600707). | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation | MEC/2010-CONES-00029 | es_ES |
dc.relation.ispartof | Neurocomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Document image analysis | es_ES |
dc.subject | Stochastic context-free grammars | es_ES |
dc.subject | Text classification features | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Structure detection and segmentation of documents using 2D stochastic context-free grammars | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | |
dc.identifier.doi | 10.1016/j.neucom.2014.08.076 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2012-37475-C02-01/ES/SEARCH IN TRANSCRIBED MANUSCRIPTS AND DOCUMENT AUGMENTATION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/600707/EU/tranScriptorium/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/ME//AP2009-4363/ES/AP2009-4363/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Álvaro Muñoz, F.; Cruz Fernández, F.; Sánchez Peiró, JA.; Ramos Terrades, O.; Benedí Ruiz, JM. (2015). Structure detection and segmentation of documents using 2D stochastic context-free grammars. Neurocomputing. 150:147-154. https://doi.org/10.1016/j.neucom.2014.08.076 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 6th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA) | |
dc.relation.conferencedate | June 05-07, 2013 | |
dc.relation.conferenceplace | Madeira, Portugal | |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.neucom.2014.08.076 | es_ES |
dc.description.upvformatpinicio | 147 | es_ES |
dc.description.upvformatpfin | 154 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 150 | es_ES |
dc.relation.senia | 276874 | es_ES |
dc.contributor.funder | Ministerio de Educación | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Ministerio de Economía y Competitividad |