- -

Methane hydrate formation in confined nanospace can surpass nature

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Methane hydrate formation in confined nanospace can surpass nature

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casco, M.E. es_ES
dc.contributor.author Silvestre Albero, Joaquin es_ES
dc.contributor.author Ramirez-Cuesta, A.J. es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.contributor.author Jorda Moret, Jose Luis es_ES
dc.contributor.author Bansode, A. es_ES
dc.contributor.author Urakawa, A. es_ES
dc.contributor.author Peral, I. es_ES
dc.contributor.author Martinez-Escandell, M. es_ES
dc.contributor.author Kaneko, K. es_ES
dc.contributor.author Rodríguez Reinoso, Francisco es_ES
dc.date.accessioned 2016-05-17T09:42:51Z
dc.date.available 2016-05-17T09:42:51Z
dc.date.issued 2015-03
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/64217
dc.description.abstract Natural methane hydrates are believed to be the largest source of hydrocarbons on Earth. These structures are formed in specific locations such as deep-sea sediments and the permafrost based on demanding conditions of high pressure and low temperature. Here we report that, by taking advantage of the confinement effects on nanopore space, synthetic methane hydrates grow under mild conditions (3.5 MPa and 2 degrees C), with faster kinetics (within minutes) than nature, fully reversibly and with a nominal stoichiometry that mimics nature. The formation of the hydrate structures in nanospace and their similarity to natural hydrates is confirmed using inelastic neutron scattering experiments and synchrotron X-ray powder diffraction. These findings may be a step towards the application of a smart synthesis of methane hydrates in energy-demanding applications (for example, transportation). es_ES
dc.description.sponsorship We acknowledge UK Science and Technlology Facilities Council for the provision of beam time on the TOSCA spectrometer (Projects RB1410624 and RB122099) and financial support from the European Commission under the 7th Framework Programme through the 'Research Infrastructures' action of the 'Capacities' Programme (NMI3-II Grant number 283883). J.S.-A. and F.R. acknowledges the financial support from MINECO: Strategic Japanese-Spanish Cooperation Program (PLE2009-0052), Concert Project-NASEMS (PCIN-2013-057) and Generalitat Valenciana (PROMETEO/2009/002). F.R. and J.L.J. thank the financial support from MINECO (MAT2012-38567-C02-01, Consolider Ingenio 2010-Multicat CSD-2009-00050 and SEV-2012-0267). K.K. thanks Grant-in-Aid for Scientific Research (A) (2424-1038), Japan. A.B. and A.U. thank the financial support from MINECO (SEV-2013-0319). J.L.J. and I.P. thank synchrotron ALBA for beamtime availability. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group: Nature Communications es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Methane hydrate es_ES
dc.subject Nanospace es_ES
dc.title Methane hydrate formation in confined nanospace can surpass nature es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms7432
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PLE2009-0052/ES/Monolitos nanoestructurados de carbón para almacenamiento y conversión de metano/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/283883/EU/Neutron Scattering and Muon Spectroscopy Integrated Initiative/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PCIN-2013-057/ES/ADSORBENTES EQUIPADOS CON NANORADIADORES PARA ALMACENAMIENTO EFICIENTE Y SEGURO DE METANO/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38567-C02-01/ES/MATERIALES ZEOLITICOS COMO ESTRUCTURAS ANFITRIONAS DE NANOPARTICULAS. SINTESIS Y APLICACIONES NANOTECNOLOGICAS, CATALITICAS Y MEDIOAMBIENTALES/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2013-0319/ES/-/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO09%2F2009%2F002/ES/Desarrollo de nanomateriales para aplicaciones energéticas y medioambientales/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Casco, M.; Silvestre Albero, J.; Ramirez-Cuesta, A.; Rey Garcia, F.; Jorda Moret, JL.; Bansode, A.; Urakawa, A.... (2015). Methane hydrate formation in confined nanospace can surpass nature. Nature Communications. 6(6432):1-8. https://doi.org/10.1038/ncomms7432 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1038/ncomms7432 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 6432 es_ES
dc.relation.senia 306410 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Sloan, E. D. Jr., & Koh, C. A. Clathrate Hydrates of Natural Gases 3rd edn CRC Press (2007). es_ES
dc.description.references Gutt, C. et al. The structure of deuterated methane-hydrate. J. Chem. Phys. 113, 4713–4721 (2000). es_ES
dc.description.references Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A. & Lizarralde, D. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273, 1840–1843 (1996). es_ES
dc.description.references Sloan, E. D. Jr., Fundamental principles and applications of natural gas hydrates. Nature 426, 353–363 (2003). es_ES
dc.description.references Rodríguez-Reinoso, F., Almansa, C. & Molina-Sabio, M. Contribution to the evaluation of density of methane adsorbed on activated carbon. J. Phys. Chem. B 109, 20227–20231 (2005). es_ES
dc.description.references Kockrick, E. et al. Ordered mesoporous carbide derived carbons for high pressure gas storage. Carbon 48, 1707–1717 (2010). es_ES
dc.description.references Klein, N. et al. A mesoporous metal-organic framework. Angew. Chem. Int. Ed. 48, 9954–9957 (2009). es_ES
dc.description.references Makal, T. A., Li, J.-R., Lu, W. & Zhou, H.-C. Methane storage in advanced porous materials. Chem. Soc. Rev. 41, 7761–7779 (2012). es_ES
dc.description.references Peng, Y. et al. Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges. J. Am.Chem. Soc. 135, 11887–11894 (2013). es_ES
dc.description.references Casco, M. E. et al. High-pressure methane storage in porous materials: are carbon materials in the pole position? Chem. Mater 27, 959–964 (2015). es_ES
dc.description.references Ramos-Fernández, J. M., Martínez-Escandell, M. & Rodríguez-Reinoso, F. Production of binderless activated carbon monoliths by KOH activation of carbon mesophase materials. Carbon 46, 384–386 (2008). es_ES
dc.description.references Marsh, H. & Rodríguez-Reinoso, F. Activated Carbon Elsevier (2006). es_ES
dc.description.references Kubo, T. et al. Diffusion-barrier-free porous carbon monoliths as a new form of activated carbon. ChemSusChem 5, 2271–2277 (2012). es_ES
dc.description.references Kaneko, K., Itoh, T. & Fujimori, T. Collective interactions of molecules with an interfacial solid. Chem. Lett. 41, 466–475 (2012). es_ES
dc.description.references Nakamura, M., Ohba, T., Branton, P., Kanoh, H. & Kaneko, K. Equilibrium-time and pore-width dependent hysteresis of water adsorption isotherm on hydrophobic microporous carbons. Carbon 48, 305–308 (2010). es_ES
dc.description.references Vysniauskas, A. & Bishnoi, P. R. A kinetic study of methane hydrate formation. Chem. Eng. Sci. 38, 1061–1072 (1983). es_ES
dc.description.references Junhong, Q. & Tianmin, G. Kinetics of methane hydrate formation in pure water and inhibitor containing systems. Chin. J. Chem. Eng 10, 316–322 (2002). es_ES
dc.description.references Liu, J., Zhou, Y., Sun, Y., Su, W. & Zhou, L. Methane storage in wet carbon of tailored pore sizes. Carbon 49, 3731–3736 (2011). es_ES
dc.description.references Perrin, A., Celzard, A., Marêché, J. F. & Furdin, G. Methane storage within dry and wet activated carbons: a comparative study. Energy Fuels 17, 1283–1291 (2003). es_ES
dc.description.references Zhou, L., Liu, L., Su, W., Sun, Y. & Zhou, Y. Progress in studies of natural gas storage with wet adsorbents. Energy Fuels 24, 3789–3795 (2010). es_ES
dc.description.references Celzard, A. & Marêché, J. F. Optimal wetting of activated carbons for methane hydrate formation. Fuel 85, 957–966 (2006). es_ES
dc.description.references Webb, E. B. et al. High pressure rheology of hydrate slurries formed from water-in-oil emulsions. Energy Fuels 26, 3504–3509 (2012). es_ES
dc.description.references Urita, K. et al. Confinement in carbon nanospace-induced production of KI nanocrystals of high-pressure phase. J. Am. Chem. Soc. 133, 10344–10347 (2011). es_ES
dc.description.references Fujimori, T. et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 4, 2162 (2013). es_ES
dc.description.references Tse, J. S., Ratcliffe, C. L., Powell, B. M., Sears, V. F. & Handa, Y. P. Rotational and translational motions of trapped methane. Incoherent inelastic neutron scattering of methane hydrate. J. Phys. Chem. A 101, 4491–4495 (1997). es_ES
dc.description.references Gutt, C. et al. Quantum rotations in natural methane-clathrates from the Pacific sea-floor. Europhys. Lett. 48, 269–275 (1999). es_ES
dc.description.references Stern, L. A., Kirby, S. H. & Durham, W. B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice. Science 273, 1843–1848 (1996). es_ES
dc.description.references Gutt, C. et al. The structure of deuterated methane hydrate. J. Chem. Phys. 113, 4713–4721 (2000). es_ES
dc.description.references Everett, S. M. et al. Kinetics of methane hydrate decomposition studies via in situ low temperature X-ray powder diffraction. J. Phys. Chem. A 117, 3593–3598 (2013). es_ES
dc.description.references Miyawaki, J. et al. Macroscopic evidence of enhanced formation of methane nanohydrates in hydrophobic nanospaces. J. Phys. Chem. B 102, 2187–2192 (1998). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem