- -

Evolutionary optimization of neural networks with heterogeneous computation: study and implementation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Evolutionary optimization of neural networks with heterogeneous computation: study and implementation

Show full item record

Fe, JD.; Aliaga Varea, RJ.; Gadea Gironés, R. (2015). Evolutionary optimization of neural networks with heterogeneous computation: study and implementation. The Journal of Supercomputing. 71(8):2944-2962. doi:10.1007/s11227-015-1419-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64230

Files in this item

Item Metadata

Title: Evolutionary optimization of neural networks with heterogeneous computation: study and implementation
Author: Fe, Jorge Deolindo Aliaga Varea, Ramón José Gadea Gironés, Rafael
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
In the optimization of artificial neural networks (ANNs) via evolutionary algorithms and the implementation of the necessary training for the objective function, there is often a trade-off between efficiency and flexibility. ...[+]
Subjects: Evolutionary computation , Embedded system , FPGA , Neural networks
Copyrigths: Reserva de todos los derechos
Source:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-015-1419-7
Publisher:
Springer Netherlands
Publisher version: http://dx.doi.org/10.1007/s11227-015-1419-7
Thanks:
The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain.
Type: Artículo

References

Farmahini-Farahani A, Vakili S, Fakhraie SM, Safari S, Lucas C (2010) Parallel scalable hardware implementation of asynchronous discrete particle swarm optimization. Eng Appl Artif Intell 23(2):177–187

Curteanu S, Cartwright H (2011) Neural networks applied in chemistry. i. Determination of the optimal topology of multilayer perceptron neural networks. J Chemom 25(10):527–549. doi: 10.1002/cem.1401

Islam MM, Sattar MA, Amin MF, Yao X, Murase K (2009) A new adaptive merging and growing algorithm for designing artificial neural networks. Ieee Trans Syst Man Cybern Part B-Cybern 39(3):705–722 [+]
Farmahini-Farahani A, Vakili S, Fakhraie SM, Safari S, Lucas C (2010) Parallel scalable hardware implementation of asynchronous discrete particle swarm optimization. Eng Appl Artif Intell 23(2):177–187

Curteanu S, Cartwright H (2011) Neural networks applied in chemistry. i. Determination of the optimal topology of multilayer perceptron neural networks. J Chemom 25(10):527–549. doi: 10.1002/cem.1401

Islam MM, Sattar MA, Amin MF, Yao X, Murase K (2009) A new adaptive merging and growing algorithm for designing artificial neural networks. Ieee Trans Syst Man Cybern Part B-Cybern 39(3):705–722

Han KH, Kim JH (2004) Quantum-inspired evolutionary algorithms with a new termination criterion, h-epsilon gate, and two-phase scheme. Ieee Trans Evol Comput 8(2):156–169

Leung FHF, Lam HK, Ling SH, Tam PKS (2003) Tuning of the structure and parameters of a neural network using an improved genetic algorithm. Ieee Trans Neural Netw 14(1):79–88

Tsai JT, Chou JH, Liu TK (2006) Tuning the structure and parameters of a neural network by using hybrid taguchi-genetic algorithm. Ieee Trans Neural Netw 17(1):69–80

Ludermir TB, Yamazaki A, Zanchettin C (2006) An optimization methodology for neural network weights and architectures. Ieee Trans Neural Netw 17(6):1452–1459

Palmes PP, Hayasaka T, Usui S (2005) Mutation-based genetic neural network. Trans Neural Netw 16(3):587–600. doi: 10.1109/TNN.2005.844858

Mu T, Jiang J, Wang Y, Goulermas JY (2012) Adaptive data embedding framework for multiclass classification. Ieee Trans Neural Netw Learn Syst 23(8):1291–1303

Lu T-C, Yu G-R, Juang J-C (2013) Quantum-based algorithm for optimizing artificial neural networks. IEEE Trans Neural Netw Lear Syst 24(8):1266–1278

Yao X (1999) Evolving artificial neural networks. Proc Ieee 87(9):1423–1447

Yao X, Liu Y (1997) A new evolutionary system for evolving artificial neural networks. Ieee Trans Neural Netw 8(3):694–713

Mateo F, Sovilj D, Gadea-Gironés R (2010) Approximate k-NN delta test minimization method using genetic algorithms: application to time series. NEUROCOMPUTING 73(10–12, Sp):2017–2029

Hawkins S, He H, Williams G, Baxter R (2002) Outlier detection using replicator neural networks. In: Proceedings of the 5th international conference and data warehousing and knowledge discovery. DaWaK02, pp 170–180

Fe J, Aliaga RJ, Gironés RG (2013) Experimental platform for accelerate the training of anns with genetic algorithm and embedded system on fpga. In: IWINAC (2), pp 413–420

Prechelt L (1994) Proben1—a set of neural network benchmark problems and benchmarking rules. Technical report

Abbass HA (2002) An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif Intell Med 25:265–281

Ahmad F, Isa NAM, Hussain Z, Sulaiman SN (2013) A genetic algorithm-based multi-objective optimization of an artificial neural network classifier for breast cancer diagnosis. Neural Comput Appl 23(5):1427–1435

Sankaradas M, Jakkula V, Cadambi S, Chakradhar S, Durdanovic I, Cosatto E, Graf H (2009) A massively parallel coprocessor for convolutional neural networks. In: Application-specific systems, architectures and processors, 2009. ASAP 2009. 20th IEEE international conference on, July, pp 53–60

Prado R, Melo J, Oliveira J, Neto A (2012) Fpga based implementation of a fuzzy neural network modular architecture for embedded systems. In: Neural networks (IJCNN), The 2012 international joint conference on, June, pp 1–7

Çavuşlu M, Karakuzu C, Sahin S, Yakut M (2011) Neural network training based on fpga with floating point number format and its performance. Neural Comput Appl 20:195–202. doi: 10.1007/s00521-010-0423-3

Wu G-D, Zhu Z-W, Lin B-W (2011) Reconfigurable back propagation based neural network architecture. In: Integrated circuits (ISIC), 2011 13th international symposium on, Dec, pp 67–70

Pinjare SL, Kumar A (2012) Implementation of neural network back propagation training algorithm on fpga. Int J Comput Appl 52(6): 1–7, August, published by Foundation of Computer Science, New York, USA

http://www.altera.com

Aliaga R, Gadea R, Colom R, Cerda J, Ferrando N, Herrero V (2009) A mixed hardware–software approach to flexible artificial neural network training on fpga. In: Systems, architectures, modeling, and simulation, 2009. SAMOS ’09. International symposium on, July, pp 1–8

http://www.matlab.com

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record