- -

Applying basic features from sentiment analysis on automatic irony detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applying basic features from sentiment analysis on automatic irony detection

Mostrar el registro completo del ítem

Hernández Farías, I.; Benedí Ruiz, JM.; Rosso, P. (2015). Applying basic features from sentiment analysis on automatic irony detection. En Pattern Recognition and Image Analysis: 7th Iberian Conference, IbPRIA 2015, Santiago de Compostela, Spain, June 17-19, 2015, Proceedings. Springer International Publishing. 337-344. https://doi.org/10.1007/978-3-319-19390-8_38

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64255

Ficheros en el ítem

Metadatos del ítem

Título: Applying basic features from sentiment analysis on automatic irony detection
Autor: Hernández Farías, Irazú Benedí Ruiz, José Miguel Rosso, Paolo
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
People use social media to express their opinions. Often linguistic devices such as irony are used. From the sentiment analysis perspective such utterances represent a challenge being a polarity reversor (usually from ...[+]
Palabras clave: Automatic irony detection , Figurative language processing , Sentiment analysis
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-319-19389-2
Fuente:
Pattern Recognition and Image Analysis: 7th Iberian Conference, IbPRIA 2015, Santiago de Compostela, Spain, June 17-19, 2015, Proceedings. (issn: 0302-9743 )
DOI: 10.1007/978-3-319-19390-8_38
Editorial:
Springer International Publishing
Versión del editor: http://link.springer.com/chapter/10.1007/978-3-319-19390-8_38
Serie: Lecture Notes in Computer Science;9117
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//218109%2F313683/
info:eu-repo/grantAgreement/EC/FP7/269180/EU/Web Information Quality Evaluation Initiative/
info:eu-repo/grantAgreement/CONACyT//CVU-369616/
info:eu-repo/grantAgreement/MINECO//TIN2012-38603-C02-01/ES/DIANA-APPLICATIONS: FINDING HIDDEN KNOWLEDGE IN TEXTS: APPLICATIONS/
Descripción: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19390-8_38
Agradecimientos:
The National Council for Science and Technology (CONACyT Mexico) has funded the research work of the first author (Grant No.218109/313683, CVU-369616). The research work of third author was carried out inthe framework of ...[+]
Tipo: Capítulo de libro

References

Alba-Juez, L.: Irony and the other off record strategies within politeness theory. J. Engl. Am. Stud. 16, 13–24 (1995)

Attardo, S.: Irony markers and functions: towards a goal-oriented theory of irony and its processing. Rask 12, 3–20 (2000)

Barbieri, F., Saggion, H.: Modelling Irony in Twitter, pp. 56–64. Association for Computational Linguistics (2014) [+]
Alba-Juez, L.: Irony and the other off record strategies within politeness theory. J. Engl. Am. Stud. 16, 13–24 (1995)

Attardo, S.: Irony markers and functions: towards a goal-oriented theory of irony and its processing. Rask 12, 3–20 (2000)

Barbieri, F., Saggion, H.: Modelling Irony in Twitter, pp. 56–64. Association for Computational Linguistics (2014)

Bosco, C., Patti, V., Bolioli, A.: Developing corpora for sentiment analysis: the case of irony and senti-tut. IEEE Intell. Syst. 28(2), 55–63 (2013)

Buschmeier, K., Cimiano, P., Klinger, R.: An impact analysis of features in a classification approach to irony detection in product reviews. In: Proceedings of the 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 42–49. Association for Computational Linguistics (2014)

Ghosh, A., Li, G., Veale, T., Rosso, P., Shutova, E., Reyes, A., Barnden, J.: Sentiment analysis of figurative language in twitter. In: Proceedings of the International Workshop on Semantic Evaluation (SemEval-2015), Co-located with NAACL and *SEM (2015)

Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 168–177(2004)

Maynard, D., Greenwood, M.: Who cares about sarcastic tweets? investigating the impact of sarcasm on sentiment analysis. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), European Language Resources Association (ELRA) (2014)

Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet::similarity: measuring the relatedness of concepts. In: Proceedings of the 9th National Conference on Artificial Intelligence, pp. 1024–1025. Association for Computational Linguistics

Reyes, A., Rosso, P., Veale, T.: A multidimensional approach for detecting irony in twitter. Lang. Resour. Eval. 47(1), 239–268 (2013)

Wallace, B.C.: Computational irony: a survey and new perspectives. Artif. Intell. Rev. 43, 467–483 (2013)

Wang, A.P.: #irony or #sarcasm – a quantitative and qualitative study based on twitter. In: Proceedings of the PACLIC: the 27th Pacific Asia Conference on Language, Information, and Computation, pp. 349–356. Department of English, National Chengchi University (2013)

Whissell, C.: Using the revised dictionary of affect in language to quantify the emotional undertones of samples of natural languages. Psychol. Rep. 2, 509–521 (2009)

Wolf, A.: Emotional expression online: gender differences in emoticon use. CyberPsychology Behavior 3, 827–833 (2000)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem