Mostrar el registro sencillo del ítem
dc.contributor.author | Navia, Denise | es_ES |
dc.contributor.author | Mendonca, Renata S. | es_ES |
dc.contributor.author | Ferragut Pérez, Francisco José | es_ES |
dc.contributor.author | Miranda, Leticia C. | es_ES |
dc.contributor.author | Trincado, Roberto C. | es_ES |
dc.contributor.author | Michaux, Johan | es_ES |
dc.contributor.author | Navajas, Maria | es_ES |
dc.date.accessioned | 2016-05-18T15:02:06Z | |
dc.date.available | 2016-05-18T15:02:06Z | |
dc.date.issued | 2013-07 | |
dc.identifier.issn | 0300-3256 | |
dc.identifier.uri | http://hdl.handle.net/10251/64330 | |
dc.description.abstract | Defining the taxonomic identity of organisms is a prerequisite for their study, and in the case of economically important species, misidentification may lead to the application of inappropriate prevention and control strategies. Flat mites of the Brevipalpus genus include several crop pests and the systematics of these mites represents a challenge for acarologists. Many of the most economically important Brevipalpus species have repeatedly been inaccurately identified. Such problematic classification has been attributed to the likely occurrence of cryptic species in the genus. In this study, we used an integrative approach that combined molecular analyses, including sequence-based species delimitation, with detailed morphological identification using traits that have recently showed to be taxonomically informative. Sequences of mitochondrial cytochrome c oxidase subunit I (COI) were obtained from individuals collected from host plants belonging to 14 genera and 13 families across 29 locations in the Americas (Brazil, Chile, USA). The phylogenetic analyses included previously published Brevipalpus sequences from GenBank, and the final data set was classified into 44 haplotypes. Six putative species were recognised by COI-based species delimitation analysis, and morphological evidence supported each of these species. The integrative approach revealed the occurrence of cryptic species in the Brevipalpus genus and contributed to the clarification of previously noted incongruences. The results presented here allow for the evaluation of taxonomic characteristics in a phylogenetic context and indicate new characters for the differentiation of Brevipalpus species. In addition, Brevipalpus incognitus n. sp. Ferragut & Navia, a cryptic species detected in this study, is described based on morphological and molecular traits. Implications of the advances in Brevipalpus systematics presented herein with respect to pest management are briefly discussed. | es_ES |
dc.description.sponsorship | We sincerely thank Dalva L. de Queiroz Santana, Embrapa Florestas, Colombo, Parana; Aloyseia Noronha, Eduardo Chumbinho de Andrade, Juliana Freitas-Astua and Francisco F. L. Barbosa, Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia; Alberto Luiz Marsaro Jr, Embrapa Roraima, Boa Vista, Roraima; Ricardo Adaime da Silva, Embrapa Amapa, Macapa, Amapa; Patricia Maria Drumond, Embrapa Acre, Rio Branco, Acre; Manoel Guedes C. Gondim Jr and Aleuny C. Reis, Universidade Federal Rural de Pernambuco, Recife, Pernambuco; Jose. C. M. Poderoso, Universidade Federal de Sergipe, Sao Cristovao, Sergipe, all from Brazil; and Jose Carlos V. Rodrigues, University of Puerto Rico, San Juan, Puerto Rico, for their help with sampling; Tatiane G. C. M. Galasso, Brazil, for help with extensive laboratory work. We also thank Maries Pages and Fabien Condamine, INRA, UMR CBGP, France, for their help concerning the Pons analysis. This study was funded by Brazil - National Council for Scientific and Technological Development (CNPq) (call CNPq/MAPA/SDA No 064/2008, grant 578353/2008-3), Embrapa Macroprograma 3 and Fundacao de Apoio a Pesquisa do Distrito Federal (FAP-DF). Authors DN and RSM are also grateful to CNPq for the research and pos-doc fellowships, respectively. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley: 12 months | es_ES |
dc.relation.ispartof | Zoologica Scripta | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Phoenicis acari | es_ES |
dc.subject | Species delimitation | es_ES |
dc.subject | Nucleotide-sequences | es_ES |
dc.subject | Cardinium symbionts | es_ES |
dc.subject | Maximum-likelihood | es_ES |
dc.subject | B-obovatus | es_ES |
dc.subject | DNA | es_ES |
dc.subject | Mitochondrial | es_ES |
dc.subject | Californicus | es_ES |
dc.subject | Taxonomy | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Cryptic diversity in Brevipalpus mites (Tenuipalpidae) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/zsc.12013 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq/578353%2F2008/BR | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CNPq/064%2F2008/BR | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.description.bibliographicCitation | Navia, D.; Mendonca, RS.; Ferragut Pérez, FJ.; Miranda, LC.; Trincado, RC.; Michaux, J.; Navajas, M. (2013). Cryptic diversity in Brevipalpus mites (Tenuipalpidae). Zoologica Scripta. 42(4):406-426. doi:10.1111/zsc.12013 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1111/zsc.12013 | es_ES |
dc.description.upvformatpinicio | 406 | es_ES |
dc.description.upvformatpfin | 426 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 258472 | es_ES |
dc.contributor.funder | Fundação de Apoio à Pesquisa do Distrito Federal | es_ES |
dc.contributor.funder | Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil | es_ES |
dc.description.references | Ahrens, D., Monaghan, M. T., & Vogler, A. P. (2007). DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera: Scarabaeidae). Molecular Phylogenetics and Evolution, 44(1), 436-449. doi:10.1016/j.ympev.2007.02.024 | es_ES |
dc.description.references | Anisimova, M., & Gascuel, O. (2006). Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative. Systematic Biology, 55(4), 539-552. doi:10.1080/10635150600755453 | es_ES |
dc.description.references | Armstrong, K. ., & Ball, S. . (2005). DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1462), 1813-1823. doi:10.1098/rstb.2005.1713 | es_ES |
dc.description.references | Baker, E. W. (1949). The Genus Brevipalpus (Acarina: Pseudoleptidae). American Midland Naturalist, 42(2), 350. doi:10.2307/2422013 | es_ES |
dc.description.references | Baker , E. W. Tuttle , D. M. 1987 The false spider mites of Mexico (Tenuipalpidae: Acari) 1 236 | es_ES |
dc.description.references | Baker, E. W., Tuttle, D. M., & Abbatiello, M. (1975). The false spider mites of northwestern and north central Mexico (Acarina, Tenuipalpidae). Smithsonian Contributions to Zoology, (194), 1-23. doi:10.5479/si.00810282.194 | es_ES |
dc.description.references | Beard , J. J. Ochoa , R. Redford , A. J. Trice , M. D. Walters , T. W. Mitter , C. 2012 Flat mites of the World - Part I Raoiella and Brevipalpus Fort Collins, CO, USA http://idtools.org/id/mites/flatmites/ | es_ES |
dc.description.references | Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., … Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3), 148-155. doi:10.1016/j.tree.2006.11.004 | es_ES |
dc.description.references | Calcagno, V., Bonhomme, V., Thomas, Y., Singer, M. C., & Bourguet, D. (2010). Divergence in behaviour between the European corn borer, Ostrinia nubilalis , and its sibling species Ostrinia scapulalis : adaptation to human harvesting? Proceedings of the Royal Society B: Biological Sciences, 277(1694), 2703-2709. doi:10.1098/rspb.2010.0433 | es_ES |
dc.description.references | Chagas, C. M., Kitajima, E. W., & Rodrigues, J. C. V. (2003). Coffee Ringspot Virus Vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) in Coffee. Experimental and Applied Acarology, 30(1-3), 203-213. doi:10.1023/b:appa.0000006549.87310.41 | es_ES |
dc.description.references | Childers, C. C., & Derrick, K. S. (2003). Brevipalpus Mites as Vectors of Unassigned Rhabdoviruses in Various Crops. Experimental and Applied Acarology, 30(1-3), 1-3. doi:10.1023/b:appa.0000006542.96404.63 | es_ES |
dc.description.references | Childers, C. C., French, J. V., & Rodrigues, J. C. V. (2003). Brevipalpus californicus, B. obovatus, B. phoenicis, and B. lewisi (Acari: Tenuipalpidae): a Review of their Biology, Feeding Injury and Economic Importance. Experimental and Applied Acarology, 30(1-3), 5-28. doi:10.1023/b:appa.0000006543.34042.b4 | es_ES |
dc.description.references | Childers, C. C., Rodrigues, J. C. V., & Welbourn, W. C. (2003). Host Plants of Brevipalpus californicus, B. obovatus, and B. phoenicis (Acari: Tenuipalpidae) and their Potential Involvement in the Spread of Viral Diseases Vectored by these Mites. Experimental and Applied Acarology, 30(1-3), 29-105. doi:10.1023/b:appa.0000006544.10072.01 | es_ES |
dc.description.references | Clarke, A. R., & Walter, G. H. (1995). «Strains» and the classical biological control of insect pests. Canadian Journal of Zoology, 73(10), 1777-1790. doi:10.1139/z95-210 | es_ES |
dc.description.references | Leon, D. D. (1956). Six New False Spider Mites from Southern Florida (Acarina: Tenuipalpidae). The Florida Entomologist, 39(2), 55. doi:10.2307/3492208 | es_ES |
dc.description.references | Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., … Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Research, 36(Web Server), W465-W469. doi:10.1093/nar/gkn180 | es_ES |
dc.description.references | Evans, G. A., Cromroy, H. L., & Ochoa, R. (1993). The Tenuipalpidae of Honduras (Tenuipalpidae: Acari). The Florida Entomologist, 76(1), 126. doi:10.2307/3496021 | es_ES |
dc.description.references | FONTANETO, D., BOSCHETTI, C., & RICCI, C. (2008). Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps. Journal of Evolutionary Biology, 21(2), 580-587. doi:10.1111/j.1420-9101.2007.01472.x | es_ES |
dc.description.references | Groot, T. V. M., & Breeuwer, J. A. J. (2006). Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species. Experimental and Applied Acarology, 39(3-4), 257-271. doi:10.1007/s10493-006-9019-0 | es_ES |
dc.description.references | Guindon, S., & Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52(5), 696-704. doi:10.1080/10635150390235520 | es_ES |
dc.description.references | Hebert, P. D. N., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl_1). doi:10.1098/rsbl.2003.0025 | es_ES |
dc.description.references | Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences, 101(41), 14812-14817. doi:10.1073/pnas.0406166101 | es_ES |
dc.description.references | Henry, C. S., & Wells, M. M. (2010). Acoustic niche partitioning in two cryptic sibling species of Chrysoperla green lacewings that must duet before mating. Animal Behaviour, 80(6), 991-1003. doi:10.1016/j.anbehav.2010.08.021 | es_ES |
dc.description.references | Hoy, M. A. (2016). Agricultural Acarology. doi:10.1201/b10909 | es_ES |
dc.description.references | Jousselin, E., Desdevises, Y., & Coeur d’acier, A. (2008). Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola : bacterial genome helps define species and evolutionary relationships in aphids. Proceedings of the Royal Society B: Biological Sciences, 276(1654), 187-196. doi:10.1098/rspb.2008.0679 | es_ES |
dc.description.references | Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111-120. doi:10.1007/bf01731581 | es_ES |
dc.description.references | Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, 78(1), 454-458. doi:10.1073/pnas.78.1.454 | es_ES |
dc.description.references | Kitajima, E. W., Chagas, C. M., & Rodrigues, J. C. V. (2003). Brevipalpus-Transmitted Plant Virus and Virus-Like Diseases: Cytopathology and Some Recent Cases. Experimental and Applied Acarology, 30(1-3), 135-160. doi:10.1023/b:appa.0000006546.55305.e3 | es_ES |
dc.description.references | Kitajima, E. W., Groot, T. V. M., Novelli, V. M., Freitas-Astúa, J., Alberti, G., & de Moraes, G. J. (2007). In situ observation of the Cardinium symbionts of Brevipalpus (Acari: Tenuipalpidae) by electron microscopy. Experimental and Applied Acarology, 42(4), 263-271. doi:10.1007/s10493-007-9090-1 | es_ES |
dc.description.references | Kitajima, E. W., Rodrigues, J. C. V., & Freitas-Astua, J. (2010). An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses. Scientia Agricola, 67(3), 348-371. doi:10.1590/s0103-90162010000300014 | es_ES |
dc.description.references | Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. doi:10.1093/bioinformatics/btp187 | es_ES |
dc.description.references | Lynch, M. (2006). Mutation Pressure and the Evolution of Organelle Genomic Architecture. Science, 311(5768), 1727-1730. doi:10.1126/science.1118884 | es_ES |
dc.description.references | Maddison , W. P. Maddison , D. R. 2011 Mesquite: a modular system for evolutionary analysis http://mesquiteproject.org | es_ES |
dc.description.references | De Mendonça, R. S., Navia, D., Diniz, I. R., Auger, P., & Navajas, M. (2011). A critical review on some closely related species of Tetranychus sensu stricto (Acari: Tetranychidae) in the public DNA sequences databases. Experimental and Applied Acarology, 55(1), 1-23. doi:10.1007/s10493-011-9453-5 | es_ES |
dc.description.references | MESA, N. C., OCHOA, R., WELBOURN, W. C., EVANS, G. A., & DE MORAES, G. J. (2009). A catalog of the Tenuipalpidae (Acari) of the World with a key to genera. Zootaxa, 2098(1), 1-185. doi:10.11646/zootaxa.2098.1.1 | es_ES |
dc.description.references | Navajas, M., Lagnel, J., Gutierrez, J., & Boursot, P. (1998). Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity, 80(6), 742-752. doi:10.1046/j.1365-2540.1998.00349.x | es_ES |
dc.description.references | Ochoa , R. C. 1985 Reconocimento preliminar de los ácaros fitoparásitos del género Brevipalpus (Acari: Tenuipalpidae) en Costa Rica Facultad Agronomia, Universidad de Costa Rica 124 | es_ES |
dc.description.references | Pagès, M., Chaval, Y., Herbreteau, V., Waengsothorn, S., Cosson, J.-F., Hugot, J.-P., … Michaux, J. (2010). Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evolutionary Biology, 10(1), 184. doi:10.1186/1471-2148-10-184 | es_ES |
dc.description.references | Paterson, H. E. H. (1991). The Recognition of Cryptic Species Among Economically Important Insects. Heliothis: Research Methods and Prospects, 1-10. doi:10.1007/978-1-4612-3016-8_1 | es_ES |
dc.description.references | Pfenninger, M., & Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology, 7(1), 121. doi:10.1186/1471-2148-7-121 | es_ES |
dc.description.references | Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., … Vogler, A. P. (2006). Sequence-Based Species Delimitation for the DNA Taxonomy of Undescribed Insects. Systematic Biology, 55(4), 595-609. doi:10.1080/10635150600852011 | es_ES |
dc.description.references | Posada, D. (2006). ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Research, 34(Web Server), W700-W703. doi:10.1093/nar/gkl042 | es_ES |
dc.description.references | Posada, D., & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics, 14(9), 817-818. doi:10.1093/bioinformatics/14.9.817 | es_ES |
dc.description.references | Rodrigues, J. C. V., Kitajima, E. W., Childers, C. C., & Chagas, C. M. (2003). Citrus Leprosis Virus Vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) on Citrus in Brazil. Experimental and Applied Acarology, 30(1-3), 161-179. doi:10.1023/b:appa.0000006547.76802.6e | es_ES |
dc.description.references | Rodrigues, J. C. V., Gallo-meagher, M., Ochoa, R., Childers, C. C., & Adams, B. J. (2004). Mitochondrial DNA and RAPD polymorphisms in the haploid mite Brevipalpus phoenicis (Acari: Tenuipalpidae). Experimental and Applied Acarology, 34(3-4), 275-290. doi:10.1007/s10493-004-0571-1 | es_ES |
dc.description.references | Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572-1574. doi:10.1093/bioinformatics/btg180 | es_ES |
dc.description.references | Ros, V. I. D., & Breeuwer, J. A. J. (2007). Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Experimental and Applied Acarology, 42(4), 239-262. doi:10.1007/s10493-007-9092-z | es_ES |
dc.description.references | Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative Taxonomy: A Multisource Approach to Exploring Biodiversity. Annual Review of Entomology, 55(1), 421-438. doi:10.1146/annurev-ento-112408-085432 | es_ES |
dc.description.references | SEEMAN, O. D., & BEARD, J. J. (2011). A new species of <em>Aegyptobia</em> (Acari: Tenuipalpidae) from Myrtaceae in Australia. Systematic and Applied Acarology, 16(1), 73. doi:10.11158/saa.16.1.10 | es_ES |
dc.description.references | Shimodaira, H., & Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics, 17(12), 1246-1247. doi:10.1093/bioinformatics/17.12.1246 | es_ES |
dc.description.references | Sites, J. W., & Marshall, J. C. (2003). Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology & Evolution, 18(9), 462-470. doi:10.1016/s0169-5347(03)00184-8 | es_ES |
dc.description.references | Skoracka, A., & Dabert, M. (2009). The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bulletin of Entomological Research, 100(3), 263-272. doi:10.1017/s0007485309990216 | es_ES |
dc.description.references | Skoracka, A., Kuczyński, L., Santos de Mendonça, R., Dabert, M., Szydło, W., Knihinicki, D., … Navia, D. (2012). Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari : Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebrate Systematics, 26(4), 417. doi:10.1071/is11037 | es_ES |
dc.description.references | Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. doi:10.1093/molbev/msm092 | es_ES |
dc.description.references | Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121 | es_ES |
dc.description.references | THIERRY, M., BECKER, N., HAJRI, A., REYNAUD, B., LETT, J.-M., & DELATTE, H. (2011). Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci. Molecular Ecology, 20(10), 2172-2187. doi:10.1111/j.1365-294x.2011.05087.x | es_ES |
dc.description.references | Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. doi:10.1093/nar/22.22.4673 | es_ES |
dc.description.references | Vala, F., Breeuwer, J. A. J., & Sabelis, M. W. (2000). Wolbachia –induced ‘hybrid breakdown’ in the two–fspotted spider mite Tetranychus urticae Koch. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1456), 1931-1937. doi:10.1098/rspb.2000.1232 | es_ES |
dc.description.references | Weeks, A. R. (2001). A Mite Species That Consists Entirely of Haploid Females. Science, 292(5526), 2479-2482. doi:10.1126/science.1060411 | es_ES |
dc.description.references | Welbourn, W. C., Ochoa, R., Kane, E. C., & Erbe, E. F. (2003). Morphological Observations on Brevipalpus phoenicis (Acari: Tenuipalpidae) Including Comparisons with B. californicus and B. obovatus. Experimental and Applied Acarology, 30(1-3), 107-133. doi:10.1023/b:appa.0000006545.40017.a0 | es_ES |
dc.description.references | Wiens, J. J. (2007). Species Delimitation: New Approaches for Discovering Diversity. Systematic Biology, 56(6), 875-878. doi:10.1080/10635150701748506 | es_ES |