- -

Detection of opinion spam with character n-grams

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Detection of opinion spam with character n-grams

Show full item record

Hernández Fusilier, D.; Montes Gomez, M.; Rosso, P.; Guzmán Cabrera, R. (2015). Detection of opinion spam with character n-grams. En Computational Linguistics and Intelligent Text Processing: 16th International Conference, CICLing 2015, Cairo, Egypt, April 14-20, 2015, Proceedings, Part II. Springer International Publishing. 285-294. https://doi.org/10.1007/978-3-319-18117-2_21

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64360

Files in this item

Item Metadata

Title: Detection of opinion spam with character n-grams
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
In this paper we consider the detection of opinion spam as a stylistic classi cation task because, given a particular domain, the deceptive and truthful opinions are similar in content but di ffer in the way opinions are ...[+]
Subjects: Opinion spam , Deceptive detection , Character n-grams , Word n-grams
Copyrigths: Reserva de todos los derechos
ISBN: 978-3-319-18116-5
Source:
Computational Linguistics and Intelligent Text Processing: 16th International Conference, CICLing 2015, Cairo, Egypt, April 14-20, 2015, Proceedings, Part II. (issn: 0302-9743 )
DOI: 10.1007/978-3-319-18117-2_21
Publisher:
Springer International Publishing
Publisher version: http://link.springer.com/chapter/10.1007/978-3-319-18117-2_21
Series: Lecture Notes in Computer Science;9042
Project ID: info:eu-repo/grantAgreement/EC/FP7/269180/EU
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-18117-2_21
Thanks:
This work is the result of the collaboration in the frame-work of the WIQEI IRSES project (Grant No. 269180) within the FP7 Marie Curie. The second author was partially supported by the LACCIR programme under project ID ...[+]
Type: Capítulo de libro

References

Blamey, B., Crick, T., Oatley, G.: RU:-) or:-(? character-vs. word-gram feature selection for sentiment classification of OSN corpora. Research and Development in Intelligent Systems XXIX, 207–212 (2012)

Drucker, H., Wu, D., Vapnik, V.N.: Support Vector Machines for Spam Categorization. IEEE Transactions on Neural Networks 10(5), 1048–1054 (2002)

Feng, S., Banerjee, R., Choi, Y.: Syntactic Stylometry for Deception Detection. Association for Computational Linguistics, short paper. ACL (2012) [+]
Blamey, B., Crick, T., Oatley, G.: RU:-) or:-(? character-vs. word-gram feature selection for sentiment classification of OSN corpora. Research and Development in Intelligent Systems XXIX, 207–212 (2012)

Drucker, H., Wu, D., Vapnik, V.N.: Support Vector Machines for Spam Categorization. IEEE Transactions on Neural Networks 10(5), 1048–1054 (2002)

Feng, S., Banerjee, R., Choi, Y.: Syntactic Stylometry for Deception Detection. Association for Computational Linguistics, short paper. ACL (2012)

Feng, S., Xing, L., Gogar, A., Choi, Y.: Distributional Footprints of Deceptive Product Reviews. In: Proceedings of the 2012 International AAAI Conference on WebBlogs and Social Media (June 2012)

Gyongyi, Z., Garcia-Molina, H., Pedersen, J.: Combating Web Spam with Trust Rank. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, vol. 30, pp. 576–587. VLDB Endowment (2004)

Hall, M., Eibe, F., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: an Update. SIGKDD Explor. Newsl. 10–18 (2009)

Hernández-Fusilier, D., Guzmán-Cabrera, R., Montes-y-Gómez, M., Rosso, P.: Using PU-learning to Detect Deceptive Opinion Spam. In: Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis for Computational Linguistics: Human Language Technologies, Atlanta, Georgia, USA, pp. 38–45 (2013)

Hernández-Fusilier, D., Montes-y-Gómez, M., Rosso, P., Guzmán-Cabrera, R.: Detecting Positive and Negative Deceptive Opinions using PU-learning. Information Processing & Management (2014), doi:10.1016/j.ipm.2014.11.001

Jindal, N., Liu, B.: Opinion Spam and Analysis. In: Proceedings of the International Conference on Web Search and Web Data Mining, pp. 219–230 (2008)

Jindal, N., Liu, B., Lim, E.: Finding Unusual Review Patterns Using Unexpected Rules. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 210–220(October 2010)

Kanaris, I., Kanaris, K., Houvardas, I., Stamatatos, E.: Word versus character n-grams for anti-spam filtering. International Journal on Artificial Intelligence Tools 16(6), 1047–1067 (2007)

Lim, E.P., Nguyen, V.A., Jindal, N., Liu, B., Lauw, H.W.: Detecting Product Review Spammers Using Rating Behaviours. In: CIKM, pp. 939–948 (2010)

Liu, B.: Sentiment Analysis and Opinion Mining. Synthesis Lecture on Human Language Technologies. Morgan & Claypool Publishers (2012)

Mukherjee, A., Liu, B., Wang, J., Glance, N., Jindal, N.: Detecting Group Review Spam. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 93–94 (2011)

Ntoulas, A., Najork, M., Manasse, M., Fetterly, D.: Detecting Spam Web Pages through Content Analysis. Transactions on Management Information Systems (TMIS), 83–92 (2006)

Ott, M., Choi, Y., Cardie, C., Hancock, J.T.: Finding Deceptive Opinion Spam by any Stretch of the Imagination. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Oregon, USA, pp. 309–319 (2011)

Ott, M., Cardie, C., Hancock, J.T.: Negative Deceptive Opinion Spam. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, Georgia, USA, pp. 309–319 (2013)

Raymond, Y.K., Lau, S.Y., Liao, R., Chi-Wai, K., Kaiquan, X., Yunqing, X., Yuefeng, L.: Text Mining and Probabilistic Modeling for Online Review Spam Detection. ACM Transactions on Management Information Systems 2(4), Article: 25, 1–30 (2011)

Stamatatos, E.: On the robustness of authorship attribution based on character n-gram features. Journal of Law & Policy 21(2) (2013)

Wu, G., Greene, D., Cunningham, P.: Merging Multiple Criteria to Identify Suspicious Reviews. In: RecSys 2010, pp. 241–244 (2010)

Xie, S., Wang, G., Lin, S., Yu, P.S.: Review Spam Detection via Time Series Pattern Discovery. In: Proceedings of the 21st International Conference Companion on World Wide Web, pp. 635–636 (2012)

Zhou, L., Sh, Y., Zhang, D.: A Statistical Language Modeling Approach to Online Deception Detection. IEEE Transactions on Knowledge and Data Engineering 20(8), 1077–1081 (2008)

[-]

This item appears in the following Collection(s)

Show full item record