- -

On the modification of binarization algorithms to retain grayscale information for handwritten text recognition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the modification of binarization algorithms to retain grayscale information for handwritten text recognition

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Villegas, Mauricio es_ES
dc.contributor.author Romero Gómez, Verónica es_ES
dc.contributor.author Sánchez Peiró, Joan Andreu es_ES
dc.date.accessioned 2016-05-19T09:51:22Z
dc.date.available 2016-05-19T09:51:22Z
dc.date.issued 2015-06-09
dc.identifier.isbn 978-3-319-19389-2
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10251/64376
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19390-8_24 es_ES
dc.description.abstract [EN] The amount of digitized legacy documents has been rising over the last years due mainly to the increasing number of on-line digital libraries publishing this kind of documents. The vast majority of them remain waiting to be transcribed to provide historians and other researchers new ways of indexing, consulting and querying them. However, the performance accuracy of state-of-the-art Handwritten Text Recognition techniques decreases dramatically when they are applied to these historical documents. This is mainly due to the typical paper degradation problems. Therefore, robust pre-processing techniques is an important step for helping further recognition steps. This paper proposes to take existing binarization techniques, in order to retain their advantages, and modify them in such a way that some of the original grayscale information is preserved and be considered by the subsequent recognizer. Results are reported with the publicly available ESPOSALLES database. es_ES
dc.description.sponsorship The research leading to these results has received funding from the European Union’s Seventh Framework Programme FP7/2007-2013) under grant agreement No. 600707 - tranScriptorium and the Spanish MEC under the STraDA project (TIN2012-37475-C02-01).
dc.language Inglés es_ES
dc.publisher Springer International Publishing es_ES
dc.relation.ispartof Pattern Recognition and Image Analysis: 7th Iberian Conference, IbPRIA 2015, Santiago de Compostela, Spain, June 17-19, 2015, Proceedings es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;9117
dc.rights Reserva de todos los derechos es_ES
dc.subject Handwritten text recognition es_ES
dc.subject Pre-processing of handwritten historical documents es_ES
dc.subject Background removal es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title On the modification of binarization algorithms to retain grayscale information for handwritten text recognition es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-319-19390-8_24
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/600707/EU/tranScriptorium/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2012-37475-C02-01/ES/SEARCH IN TRANSCRIBED MANUSCRIPTS AND DOCUMENT AUGMENTATION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Villegas, M.; Romero Gómez, V.; Sánchez Peiró, JA. (2015). On the modification of binarization algorithms to retain grayscale information for handwritten text recognition. En Pattern Recognition and Image Analysis: 7th Iberian Conference, IbPRIA 2015, Santiago de Compostela, Spain, June 17-19, 2015, Proceedings. Springer International Publishing. 208-215. https://doi.org/10.1007/978-3-319-19390-8_24 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 7th Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA)
dc.relation.conferencedate June 17-19, 2015
dc.relation.conferenceplace Santiago de Compostela, Spain
dc.relation.publisherversion http://link.springer.com/chapter/10.1007/978-3-319-19390-8_24 es_ES
dc.description.upvformatpinicio 208 es_ES
dc.description.upvformatpfin 215 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 294797 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Drida, F.: Towards restoring historic documents degraded over time. In: Proceedings of 2nd IEEE International Conference on Document Image Analysis for Libraries (DIAL 2006), Lyon, France, pp. 350–357 (2006) es_ES
dc.description.references Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., Schmidhuber, J.: A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(5), 855–868 (2009) es_ES
dc.description.references Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge (1998) es_ES
dc.description.references Khurshid, K., Siddiqi, I., Faure, C., Vincent, N.: Comparison of niblack inspired binarization methods for ancient documents. In: Berkner, K., Likforman-Sulem, L. (eds.) 16th Document Recognition and Retrieval Conference, DRR 2009, SPIE Proceedings, vol. 7247, pp. 1–10. SPIE, San Jose (18–22 January 2009). doi: 10.1117/12.805827 es_ES
dc.description.references Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling, Detroit, USA, vol. 1, pp. 181–184 (1995) es_ES
dc.description.references Marti, U., Bunke, H.: Using a statistical language model to improve the preformance of an HMM-based cursive handwriting recognition system. IJPRAI 15(1), 65–90 (2001) es_ES
dc.description.references Niblack, W.: An Introduction to Digital Image Processing, pp. 115–116. Prentice-Hall, Englewood Cliffs (1986) es_ES
dc.description.references Romero, V., Fornés, A., Serrano, N., Sánchez, J., Toselli, A., Frinken, V., Vidal, E., Lladós, J.: The ESPOSALLES database: An ancient marriage license corpus for off-line handwriting recognition. Pattern Recogn. 46, 1658–1669 (2013). doi: 10.1016/j.patcog.2012.11.024 es_ES
dc.description.references España-Boquera, S., Castro-Bleda, M.J., Gorbe-Moya, J., Zamora-Martínez, F.: Improving offline handwriting text recognition with hybrid hmm/ann models. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 767–779 (2011) es_ES
dc.description.references Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recog. 33(2), 225–236 (2000). doi: 10.1016/S0031-3203(99)00055-2 es_ES
dc.description.references Shafait, F., Keysers, D., Breuel, T.M.: Efficient implementation of local adaptive thresholding techniques using integral images. In: Proceedings of the SPIE 6815, Document Recognition and Retrieval XV, 681510, pp. 1–6, January 2008. doi: 10.1117/12.767755 es_ES
dc.description.references Toselli, A.H., Juan, A., Keysers, D., González, J., Salvador, I., Ney, H., Vidal, E., Casacuberta, F.: Integrated handwriting recognition and interpretation using finite-state models. Int. J. Pattern Recog. Artif. Intell. 18(4), 519–539 (2004). doi: 10.1142/S0218001404003344 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem