- -

Class sizes of prime-power order p'-elements and normal subgroups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Class sizes of prime-power order p'-elements and normal subgroups

Show full item record

Beltrán, A.; Felipe Román, MJ.; Shao, C. (2015). Class sizes of prime-power order p'-elements and normal subgroups. Annali di Matematica Pura ed Applicata. 194(5):1527-1533. doi:10.1007/s10231-014-0432-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64385

Files in this item

Item Metadata

Title: Class sizes of prime-power order p'-elements and normal subgroups
Author: Beltrán, Antonio Felipe Román, María Josefa Shao, Changguo
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
We prove an extension of the renowned Itô’s theorem on groups having two class sizes in three different directions at the same time: normal subgroups, p′p′-elements and prime-power order elements. Let NN be a normal subgroup ...[+]
Subjects: Finite groups , Conjugacy class sizes , Normal subgroups , Prime-power order element , p′p′-Elements
Copyrigths: Reserva de todos los derechos
Source:
Annali di Matematica Pura ed Applicata. (issn: 0373-3114 ) (eissn: 1618-1891 )
DOI: 10.1007/s10231-014-0432-4
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s10231-014-0432-4
Thanks:
We are very grateful to the referee, who provided us a significant simplification of the last step of the proof of the main theorem and for many comments which have contributed to improve the paper. C. G. Shao wants to ...[+]
Type: Artículo

References

Akhlaghi, Z., Beltrán, A., Felipe, M.J.: The influence of $$p$$ p -regular class sizes on normal subgroups. J. Group Theory. 16, 585–593 (2013)

Alemany, E., Beltrán, A., Felipe, M.J.: Nilpotency of normal subgroups having two $$G$$ G -class sizes. Proc. Am. Math. Soc. 139, 2663–2669 (2011)

Alemany, E., Beltrán, A., Felipe, M.J.: Finite groups with two $$p$$ p -regular conjugacy class lengths II. Bull. Aust. Math. Soc. 797, 419–425 (2009) [+]
Akhlaghi, Z., Beltrán, A., Felipe, M.J.: The influence of $$p$$ p -regular class sizes on normal subgroups. J. Group Theory. 16, 585–593 (2013)

Alemany, E., Beltrán, A., Felipe, M.J.: Nilpotency of normal subgroups having two $$G$$ G -class sizes. Proc. Am. Math. Soc. 139, 2663–2669 (2011)

Alemany, E., Beltrán, A., Felipe, M.J.: Finite groups with two $$p$$ p -regular conjugacy class lengths II. Bull. Aust. Math. Soc. 797, 419–425 (2009)

Beltrán, A., Felipe, M.J.: Normal subgroups and class sizes elements of prime-power order. Proc. Am. Math. Soc. 140, 4105–4109 (2012)

Beltrán, A.: Action with nilpotent fixed point subgroup. Arch. Math. (Basel) 69, 177–184 (1997)

Camina, A.R.: Finite groups of conjugate rank 2. Nagoya Math. J. 53, 47–57 (1974)

Casolo, C., Dolfi, S., Jabara, E.: Finite groups whose noncentral class sizes have the same $$p$$ p -part for some prime $$p$$ p . Isr. J. Math. 192, 197–219 (2012)

Huppert, B.: Character Theory of Finite groups, vol. 25. De Gruyter Expositions in Mathemathics, Berlin, New York (1998)

Kleidman, P., Liebeck, M.: The Subgroup Structure of The Finite Classical Groups. London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge (1990)

Kurzweil, K., Stellmacher, B.: The Theory of Finite Groups. An Introduction. Springer, New York (2004)

The GAP Group, GAP—Groups, Algorithms and Programming, Vers. 4.4.12 (2008). http://www.gap-system.org

Vasiliev, A.V., Vdovin, E.P.: An adjacency criterion for the prime graph of a finite simple group. Algebra Logic 44(6), 381–406 (2005)

[-]

This item appears in the following Collection(s)

Show full item record