- -

Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Laguarda-Miro, Nicolas es_ES
dc.contributor.author Werner Ferreira, Francesca es_ES
dc.contributor.author Garcia-Breijo, Eduardo es_ES
dc.contributor.author Ibáñez Civera, Francisco Javier es_ES
dc.contributor.author Gil Sánchez, Luís es_ES
dc.contributor.author Garrigues Baixauli, José es_ES
dc.date.accessioned 2016-05-20T12:57:20Z
dc.date.available 2016-05-20T12:57:20Z
dc.date.issued 2012-09
dc.identifier.issn 0925-4005
dc.identifier.uri http://hdl.handle.net/10251/64468
dc.description.abstract Glyphosate quantification methods are complex and expensive, and its control in natural water bodies is getting more important year after year. In order to find a new system that facilitates the detection of glyphosate, we present a comparison between two models to predict glyphosate concentration in aqueous dissolutions. One of them is done by an artificial neural network (ANN) embedded in a microcontroller and the other one is done by statistic methods (Partial Least Squares) in a computer. From an analytical point of view, voltammetric techniques have been selected to obtain electrochemical responses to different glyphosate concentrations. In order to get them, a voltammetry/amperometry device designed by our research group and called FraPlus has been used. In this work we have selected two sensitive electrodes (cobalt and copper), 10 different glyphosate concentrations and a train pulse made by nine different voltammetric pulses to build the models. The ANN developed model is able to properly relate data obtained by FraPlus and glyphosate concentrations and the obtained value for regression coefficient (R) is 0.9998 and the P-value is 0.0. Taking into account these results, we propose this ANN model based in voltammetric techniques working with glyphosate concentrations in a buffer as an approach to glyphosate detection in natural water bodies. es_ES
dc.description.sponsorship Authors acknowledge financial support from the Universitat Politecnica de Valencia and its Centre de Cooperacio al Desenvolupament (Programa ADSIDEO-COOPERACIO 2010) for the research fellowship and support given by UNIJUI University & Staff during the stage of Prof. Laguarda in Ijui (RS-Brazil). We also thank MICINN (MAT2009-14564-C04-02) and GVA (PPC/2011/019) for their respective research fellowships. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Sensors and Actuators B: Chemical es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial neural network es_ES
dc.subject Microcontroller es_ES
dc.subject Glyphosate es_ES
dc.subject Voltammetry es_ES
dc.subject Partial Least Squares es_ES
dc.subject Mathematical modeling es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.snb.2012.05.025
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-02/ES/Aproximacion Al Biomimetismo Usando Lenguas Electronicas Y Narices Para La Deteccion De Explosivos Y Agentes Nerviosos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PPC%2F2011%2F019/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Laguarda-Miro, N.; Werner Ferreira, F.; Garcia-Breijo, E.; Ibáñez Civera, FJ.; Gil Sánchez, L.; Garrigues Baixauli, J. (2012). Glyphosate detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network. Sensors and Actuators B: Chemical. 171-172:528-536. https://doi.org/10.1016/j.snb.2012.05.025 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.snb.2012.05.025 es_ES
dc.description.upvformatpinicio 528 es_ES
dc.description.upvformatpfin 536 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 171-172 es_ES
dc.relation.senia 231349 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem