- -

The P wave time-frequency variability reflects atrial conduction defects before paroxysmal atrial fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The P wave time-frequency variability reflects atrial conduction defects before paroxysmal atrial fibrillation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Martínez, Arturo es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2016-05-21T08:34:18Z
dc.date.available 2016-05-21T08:34:18Z
dc.date.issued 2015-09
dc.identifier.issn 1082-720X
dc.identifier.uri http://hdl.handle.net/10251/64528
dc.description.abstract BackgroundThe study of atrial conduction defects associated with the onset of paroxysmal atrial fibrillation (PAF) can be addressed by analyzing the P wave from the surface electrocardiogram (ECG). Traditionally, signal-averaged ECGs have been mostly used for this purpose. However, this alternative hinders the possibility to quantify every single P wave, its variability over time, as well as to obtain complimentary and evolving information about the arrhythmia. This work analyzes the time progression of several time and frequency P wave features as potential indicators of atrial conduction variability several hours preceding the onset of PAF. MethodsThe longest sinus rhythm interval from 24-hour Holter recordings of 46 PAF patients was selected. Next, the 2 hours before the onset of PAF were extracted and divided into two 1-hour periods. Every single P wave was automatically delineated and characterized by 16 time and frequency metrics, such as its duration, absolute energy in several frequency bands and high-to-low-frequency energy ratios. Finally, the P wave variability over each 1-hour period was estimated from the 16 features making use of a least-squares linear fitting. As a reference, the same parameters were also estimated from a set of 1-hour ECG segments randomly chosen from a control group of 53 healthy subjects age-, gender-, and heart rate-matched. ResultsAll the analyzed metrics provided an increasing P wave variability trend as the onset of PAF approximated, being P wave duration and P wave high-frequency energy the most significant individual metrics. The linear fitting slope associated with P wave duration was (2.48 1.98)x10(-2) for healthy subjects, (23.8 +/- 14.1)x10(-2)for ECG segments far from PAF and for (81.8 +/- 48.7)x10(-2)ECG segments close to PAF p = 6.96x10(-22). Similarly, the P wave high-frequency energy linear fitting slope was (2.42 +/- 4.97)x10(-9), (54.2 +/- 107.1)x10(-9) and (274.2 +/- 566.1)x10(-9), respectively (p = 2.85x10(-20)). A univariate discriminant analysis provided that both P wave duration and P wave high-frequency energy could discern among the three ECG sets with diagnostic ability around 80%, which was improved up to 88% by combining these metrics in a multivariate discriminant analysis. ConclusionAlterations in atrial conduction can be successfully quantified several hours before the onset of PAF by estimating variability over time of several time and frequency P wave features. es_ES
dc.description.sponsorship Work supported by the project PPII11-0194-8121 from Junta de Comunidades de Castilla La Mancha. The authors are grateful to cardiologists Fernando Hornero, Lorenzo Facila, and Federico Paredes, from the Cardiac University Hospital of Valencia, for their valuable assistance in the inspection of the ECG recordings. en_EN
dc.language Inglés es_ES
dc.publisher Wiley: 12 months es_ES
dc.relation.ispartof Annals of Noninvasive Electrocardiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial conduction es_ES
dc.subject Paroxysmal atrial fibrillation es_ES
dc.subject Surface P wave es_ES
dc.subject Time and frequency analysis es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title The P wave time-frequency variability reflects atrial conduction defects before paroxysmal atrial fibrillation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/anec.12240
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//PPII11-0194-8121/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Alcaraz, R.; Martínez, A.; Rieta, JJ. (2015). The P wave time-frequency variability reflects atrial conduction defects before paroxysmal atrial fibrillation. Annals of Noninvasive Electrocardiology. 20(5):433-445. https://doi.org/10.1111/anec.12240 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/10.1111/anec.12240 es_ES
dc.description.upvformatpinicio 433 es_ES
dc.description.upvformatpfin 445 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 302086 es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.description.references Platonov, P. G. (2012). P-Wave Morphology: Underlying Mechanisms and Clinical Implications. Annals of Noninvasive Electrocardiology, 17(3), 161-169. doi:10.1111/j.1542-474x.2012.00534.x es_ES
dc.description.references Sovilj, S., Van Oosterom, A., Rajsman, G., & Magjarevic, R. (2010). ECG-based prediction of atrial fibrillation development following coronary artery bypass grafting. Physiological Measurement, 31(5), 663-677. doi:10.1088/0967-3334/31/5/005 es_ES
dc.description.references Abe, Y., Fukunami, M., Yamada, T., Ohmori, M., Shimonagata, T., Kumagai, K., … Hoki, N. (1997). Prediction of Transition to Chronic Atrial Fibrillation in Patients With Paroxysmal Atrial Fibrillation by Signal- Averaged Electrocardiography. Circulation, 96(8), 2612-2616. doi:10.1161/01.cir.96.8.2612 es_ES
dc.description.references Stafford, P. J., Robinson, D., & Vincent, R. (1995). Optimal analysis of the signal averaged P wave in patients with paroxysmal atrial fibrillation. Heart, 74(4), 413-418. doi:10.1136/hrt.74.4.413 es_ES
dc.description.references Stafford, P. J., & Vincent, R. (1997). Spectrotemporal and spectral turbulence analysis of the signal-averaged P wave in paroxysmal atrial fibrillation. Journal of Electrocardiology, 30(2), 79-86. doi:10.1016/s0022-0736(97)80013-1 es_ES
dc.description.references HIRAKI, T., IKEDA, H., OHGA, M., KUBARA, T. H. I., YOSHIDA, T., AJISAKA, H., … IMAIZUMI, T. (1998). Frequency- and Time-Domain Analysis of P Wave in Patients with Paroxysmal Atrial Fibrillation. Pacing and Clinical Electrophysiology, 21(1), 56-64. doi:10.1111/j.1540-8159.1998.tb01061.x es_ES
dc.description.references Stafford, P. J., Cooper, J., de Bono, D. P., Vincent, R., & Garratt, C. J. (1995). Effect of low dose sotalol on the signal averaged P wave in patients with paroxysmal atrial fibrillation. Heart, 74(6), 636-640. doi:10.1136/hrt.74.6.636 es_ES
dc.description.references Vassilikos, V., Dakos, G., Chatzizisis, Y. S., Chouvarda, I., Karvounis, C., Maynard, C., … Styliadis, I. (2011). Novel non-invasive P wave analysis for the prediction of paroxysmal atrial fibrillation recurrences in patients without structural heart disease. International Journal of Cardiology, 153(2), 165-172. doi:10.1016/j.ijcard.2010.08.029 es_ES
dc.description.references Michelucci, A., Padeletti, L., Porciani, M. C., & Gensini, G. F. (1997). Cardiac Electrophysiology Review, 1(3), 325-328. doi:10.1023/a:1009908821254 es_ES
dc.description.references Dilaveris, P. E., & Gialafos, J. E. (2001). P-Wave Dispersion: A Novel Predictor of Paroxysmal Atrial Fibrillation. Annals of Noninvasive Electrocardiology, 6(2), 159-165. doi:10.1111/j.1542-474x.2001.tb00101.x es_ES
dc.description.references Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x es_ES
dc.description.references Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31(11), 1467-1485. doi:10.1088/0967-3334/31/11/005 es_ES
dc.description.references Clavier, L., Boucher, J.-M., Lepage, R., Blanc, J.-J., & Cornily, J.-C. (2002). Automatic P-wave analysis of patients prone to atrial fibrillation. Medical & Biological Engineering & Computing, 40(1), 63-71. doi:10.1007/bf02347697 es_ES
dc.description.references Kolb, C., Nürnberger, S., Ndrepepa, G., Zrenner, B., Schömig, A., & Schmitt, C. (2001). Modes of initiation of paroxysmal atrial fibrillation from analysis of spontaneously occurring episodes using a 12-lead Holter monitoring system. The American Journal of Cardiology, 88(8), 853-857. doi:10.1016/s0002-9149(01)01891-4 es_ES
dc.description.references Thong, T., McNames, J., Aboy, M., & Goldstein, B. (2004). Prediction of Paroxysmal Atrial Fibrillation by Analysis of Atrial Premature Complexes. IEEE Transactions on Biomedical Engineering, 51(4), 561-569. doi:10.1109/tbme.2003.821030 es_ES
dc.description.references Vikman, S., Mäkikallio, T. H., Yli-Mäyry, S., Pikkujämsä, S., Koivisto, A.-M., Reinikainen, P., … Huikuri, H. V. (1999). Altered Complexity and Correlation Properties of R-R Interval Dynamics Before the Spontaneous Onset of Paroxysmal Atrial Fibrillation. Circulation, 100(20), 2079-2084. doi:10.1161/01.cir.100.20.2079 es_ES
dc.description.references Shin, D.-G., Yoo, C.-S., Yi, S.-H., Bae, J.-H., Kim, Y.-J., Park, J.-S., & Hong, G.-R. (2006). Prediction of Paroxysmal Atrial Fibrillation Using Nonlinear Analysis of the R-R Interval Dynamics Before the Spontaneous Onset of Atrial Fibrillation. Circulation Journal, 70(1), 94-99. doi:10.1253/circj.70.94 es_ES
dc.description.references Hickey, B., Heneghan, C., & De Chazal, P. (2004). Non-Episode-Dependent Assessment of Paroxysmal Atrial Fibrillation Through Measurement of RR Interval Dynamics and Atrial Premature Contractions. Annals of Biomedical Engineering, 32(5), 677-687. doi:10.1023/b:abme.0000030233.39769.a4 es_ES
dc.description.references Martínez, A., Alcaraz, R., & Rieta, J. J. (2012). Study on the P-wave feature time course as early predictors of paroxysmal atrial fibrillation. Physiological Measurement, 33(12), 1959-1974. doi:10.1088/0967-3334/33/12/1959 es_ES
dc.description.references Yamada, T., Fukunami, M., Ohmori, M., Kumagai, K., Sarai, A., Kondoh, N., … Hoki, N. (1992). Characteristics of frequency content of atrial signal-averaged electrocardiograms during sinus rhythm in patients with paroxysmal atrial fibrillation. Journal of the American College of Cardiology, 19(3), 559-563. doi:10.1016/s0735-1097(10)80273-6 es_ES
dc.description.references Kutz M McGraw-Hill 2002 es_ES
dc.description.references Diery, A., Rowlands, D., Cutmore, T. R. H., & James, D. (2011). Automated ECG diagnostic P-wave analysis using wavelets. Computer Methods and Programs in Biomedicine, 101(1), 33-43. doi:10.1016/j.cmpb.2010.04.012 es_ES
dc.description.references CENSI, F., RICCI, C., CALCAGNINI, G., TRIVENTI, M., RICCI, R. P., SANTINI, M., & BARTOLINI, P. (2008). Time-Domain and Morphological Analysis of the P-Wave. Part I: Technical Aspects for Automatic Quantification of P-Wave Features. Pacing and Clinical Electrophysiology, 31(7), 874-883. doi:10.1111/j.1540-8159.2008.01102.x es_ES
dc.description.references Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., … Wann, L. S. (2011). 2011 ACCF/AHA/HRS Focused Updates Incorporated Into the ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 123(10). doi:10.1161/cir.0b013e318214876d es_ES
dc.description.references Papageorgiou, P., Monahan, K., Boyle, N. G., Seifert, M. J., Beswick, P., Zebede, J., … Josephson, M. E. (1996). Site-Dependent Intra-Atrial Conduction Delay. Circulation, 94(3), 384-389. doi:10.1161/01.cir.94.3.384 es_ES
dc.description.references UHLEY, H. (2007). It Is Time to Include P-Wave Duration. Pacing and Clinical Electrophysiology, 30(3), 293-294. doi:10.1111/j.1540-8159.2007.00668.x es_ES
dc.description.references Censi, F., Calcagnini, G., Ricci, C., Ricci, R. P., Santini, M., Grammatico, A., & Bartolini, P. (2007). P-Wave Morphology Assessment by a Gaussian Functions-Based Model in Atrial Fibrillation Patients. IEEE Transactions on Biomedical Engineering, 54(4), 663-672. doi:10.1109/tbme.2006.890134 es_ES
dc.description.references Gonna, H., Gallagher, M. M., Guo, X. H., Yap, Y. G., Hnatkova, K., & Camm, A. J. (2013). P-Wave Abnormality Predicts Recurrence of Atrial Fibrillation after Electrical Cardioversion: A Prospective Study. Annals of Noninvasive Electrocardiology, 19(1), 57-62. doi:10.1111/anec.12087 es_ES
dc.description.references Jurkko, R., Väänänen, H., Mäntynen, V., Kuusisto, J., Mäkijärvi, M., & Toivonen, L. (2008). High-Resolution Signal-Averaged Analysis of Atrial Electromagnetic Characteristics in Patients with Paroxysmal Lone Atrial Fibrillation. Annals of Noninvasive Electrocardiology, 13(4), 378-385. doi:10.1111/j.1542-474x.2008.00255.x es_ES
dc.description.references Holmqvist, F., Platonov, P. G., Carlson, J., Zareba, W., & Moss, A. J. (2009). Altered Interatrial Conduction Detected in MADIT II Patients Bound to Develop Atrial Fibrillation. Annals of Noninvasive Electrocardiology, 14(3), 268-275. doi:10.1111/j.1542-474x.2009.00309.x es_ES
dc.description.references Havmöller, R., Carlson, J., Holmqvist, F., Olsson, B., & Platonov, P. (2009). Evolution of P-Wave Morphology in Healthy Individuals: A 3-Year Follow-Up Study. Annals of Noninvasive Electrocardiology, 14(3), 226-233. doi:10.1111/j.1542-474x.2009.00301.x es_ES
dc.description.references Babaev, A. A., Vloka, M. E., Sadurski, R., & Steinberg, J. S. (2000). Influence of age on atrial activation as measured by the P-wave signal-averaged electrocardiogram. The American Journal of Cardiology, 86(6), 692-695. doi:10.1016/s0002-9149(00)01056-0 es_ES
dc.description.references Havmoller, R., Carlson, J., Holmqvist, F., Herreros, A., Meurling, C. J., Olsson, B., & Platonov, P. (2007). Age-related changes in P wave morphology in healthy subjects. BMC Cardiovascular Disorders, 7(1). doi:10.1186/1471-2261-7-22 es_ES
dc.description.references Dhala, A., Underwood, D., Leman, R., Madu, E., Baugh, D., Ozawa, Y., … Reddy, S. (2002). Signal-Averaged P-Wave Analysis of Normal Controls and Patients with Paroxysmal Atrial Fibrillation: A Study in Gender Differences, Age Dependence, and Reproducibility. Clinical Cardiology, 25(11), 525-531. doi:10.1002/clc.4960251109 es_ES
dc.description.references Blanche, C., Tran, N., Rigamonti, F., Burri, H., & Zimmermann, M. (2012). Value of P-wave signal averaging to predict atrial fibrillation recurrences after pulmonary vein isolation. EP Europace, 15(2), 198-204. doi:10.1093/europace/eus251 es_ES
dc.description.references Cheema, A. N., Ahmed, M. W., Kadish, A. H., & Goldberger, J. J. (1995). Effects of autonomic stimulation and blockade on signal-averaged P wave duration. Journal of the American College of Cardiology, 26(2), 497-502. doi:10.1016/0735-1097(95)80028-f es_ES
dc.description.references De Bacquer, D., Willekens, J., & De Backer, G. (2007). Long-Term Prognostic Value of P-Wave Characteristics for the Development of Atrial Fibrillation in Subjects Aged 55 to 74 Years at Baseline. The American Journal of Cardiology, 100(5), 850-854. doi:10.1016/j.amjcard.2007.04.017 es_ES
dc.description.references Passman, R., Beshai, J., Pavri, B., & Kimmel, S. (2001). Predicting post–coronary bypass surgery atrial arrhythmias from the preoperative electrocardiogram. American Heart Journal, 142(5), 806-810. doi:10.1067/mhj.2001.118736 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem