- -

Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Taïbi, Khaled es_ES
dc.contributor.author Campo García, Antonio Dámaso del es_ES
dc.contributor.author Mulet Salort, José Miguel es_ES
dc.contributor.author Flors, J. es_ES
dc.contributor.author Aguado, A. es_ES
dc.date.accessioned 2016-05-23T14:18:10Z
dc.date.available 2016-05-23T14:18:10Z
dc.date.issued 2014-09
dc.identifier.issn 0169-4286
dc.identifier.uri http://hdl.handle.net/10251/64620
dc.description.abstract Large-scale biogeographical shifts in forest tree distributions are predicted in response to the altered precipitation and temperature regimes associated with climate change. Adaptive forest management to climate change experienced in either stable or rapidly changing environments must consider this fact when carrying out reforestation programs or specifically assisted population migration for conservation purposes. The aim of this study was to compare field performance of eleven seed sources of Aleppo pine outplanted in core and marginal habitats and to assess their phenotypic plasticity for further screening under specific conditions in particular reforestation areas. We hypothesize that current marginal habitat due to low temperature is shifting toward conditions found on the core habitat and that current core habitat will shift toward warmer and drier marginal habitat. Our study reproduced real conditions of reforestation in potential future climatic conditions. Results suggest that it is difficult to predict Aleppo pine provenances' performance in different natural sites from their performance at a single location, even though 'Levante interior' and 'La Mancha' seed sources showed the best overall response among sites. On a site basis, provenances were matched in groups according to their survival and growth responses. Seedlings grown from local seed sources or seed orchards performed better on the core habitat. However, as conditions shifted to marginal habitats, seedlings from climatically similar regions performed better than local sources at least in the short term; our findings suggest that new plantations in areas already affected by global change could be better adapted if they use alternative seed sources. es_ES
dc.description.sponsorship This study is a part of two research projects: "Application of molecular biology techniques in forest restoration in Mediterranean environments, PAID-05-11" funded by the Universitat Politecnica de Valencia (UPV), program for supporting R&D of new multidisciplinary research lines; and the contract subscribed between the UPV and the Ministry of Environment, Rural and Marine affairs (Centro Nacional de Recursos Geneticos Forestales de Alaquas) through its public partnership TRAGSA titled: "Study of seedling quality and field performance of 12 seed sources of Pinus halepensis Mill." The authors are grateful to Amparo Pedros-Mari for field work in La Hunde, to the Valencia Regional Government (CMAAUV, Generalitat Valenciana) and VAERSA staff for their support in allowing the use of the experimental forest of La Hunde. We thank Dr. Kasten Dumroese from USDA Forest Service, Rocky Mountain Research Station for his critical and valuable comments on the draft manuscript. Also, we thank the anonymous referees for their comments, which significantly improved the final manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof New Forests es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Pinus halepensis es_ES
dc.subject Plantation performance es_ES
dc.subject Core and marginal habitats es_ES
dc.subject Growth es_ES
dc.subject Survival es_ES
dc.subject Assisted population migration es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11056-014-9423-y
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-11/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Taïbi, K.; Campo García, ADD.; Mulet Salort, JM.; Flors, J.; Aguado, A. (2014). Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions. New Forests. 45(5):603-624. https://doi.org/10.1007/s11056-014-9423-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11056-014-9423-y es_ES
dc.description.upvformatpinicio 603 es_ES
dc.description.upvformatpfin 624 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 45 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 268905 es_ES
dc.identifier.eissn 1573-5095
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Agúndez ID, Degen B, von Wuehlisch G, Alia R (1997) Genetic variation of Aleppo pine (Pinus halepensis mill.). For Gen 4(4):201–209 es_ES
dc.description.references Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol App 1:95–111. doi: 10.1111/j.1752-4571.2007.00013.x es_ES
dc.description.references Alía R, Garcia del Barrio JM, Iglesias S, Mancha JA, de Miguel J, Nicolas JL, Perez F, Sanchez de Ron D (2009) Regiones de procedencia de especies forestales en España. Organismo Autonomo Parques Nacionales, Madrid es_ES
dc.description.references Atzmon N, Moshe Y, Schiller G (2004) Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecol 171:15–22 es_ES
dc.description.references Bariteau M (1992) Variabilité géographique et adaptation aux contraintes du milieu méditerranéen des pins de la section halepensis : résultats (provisoires) d’un essai en plantations comparatives en France. Ann Sci For 49:261–276 es_ES
dc.description.references Benito-Garzón M, Alía R, Robson TM, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species distributions under climate change. Glob Ecol Biogeogr 20:766–778 es_ES
dc.description.references Climent J, Prada MA, Calama R, Chambel MR, Sánchez de Ron D, Alía R (2008) To grow or to seed: ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). Am J Bot 95(7):833–842 es_ES
dc.description.references Cortina J, Vilagrosa A, Trubat R (2013) The role of nutrients for improving seedling quality in drylands. New For. doi: 10.1007/s11056-013-9379-3 es_ES
dc.description.references Cregg BM, Zhang JW (2001) Physiology and morphology of Pinus sylvestris seedlings from diverse sources under cyclic drought stress. For Ecol Manage 154:131–139 es_ES
dc.description.references del Campo AD, Navarro-Cerrillo RM, Hermoso J, Ibáñez AJ (2007a) Relationships between root growth potential and field performance in Aleppo pine. Ann For Sci 64:541–548 es_ES
dc.description.references del Campo AD, Navarro-Cerrillo RM, Hermoso J, Ibáñez AJ (2007b) Relationships between site and stock quality in Pinus halepensis Mill. reforestation on semiarid landscapes in eastern Spain. Ann For Sci 64:719–731 es_ES
dc.description.references del Campo AD, Hermoso J, Flors J, Lidón A, Navarro-Cerrillo RM (2011) Nursery location and potassium enrichment in Aleppo pine stock 2. Performance under real and hydrogel-mediated drought conditions. Forestry 84(3):235–245 es_ES
dc.description.references Esteban GL, Martín JA, de Palacios P, Fernández FG, López R (2010) Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees 24:19–30. doi: 10.1007/s00468-009-0375-3 es_ES
dc.description.references European Forest Institute (2009) A Mediterranean Forest Research Agenda-MFRA. 2010-2020. Mediterranean Regional Office–EFIMED. www.efimed.efi.int/files/attachments/efimed/mediterranean_forest_research_agenda_2010-2020.pdf es_ES
dc.description.references FAO (2013) State of Mediterranean Forests 2013. www.fao.org/docrep/017/i3226e/i3226e.pdf es_ES
dc.description.references Ferrio JP, Voltas J (2005) Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B 57:164–173 es_ES
dc.description.references Gandullo J, Sánchez-Palomares O (1994) Site ecology of Spanish pines, ICONA, Ministry of Agriculture, fisheries and food, Madrid (in Spanish) es_ES
dc.description.references Garrido A, Willaarts B, López-Gunn E, Rey D (2012) Considerations on climate variability and change in Spain. In: De Stefano L, Ramón Llamas M (eds) Water, agriculture and the environment in Spain can we square the circle? CRC Press, Boca Raton, pp 191–202 es_ES
dc.description.references Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104 es_ES
dc.description.references Grivet D, Sebastiani F, González-Martínez SC, Vendramin GG (2009) Patterns of polymorphism resulting from long-range colonization in the Mediterranean conifer Aleppo pine. New Phytol 184:1016–1028 es_ES
dc.description.references Hernandez EI, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244 es_ES
dc.description.references IPCC (2001) The Scientific Basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van Der Linden PJ, Dai X, Maskell K, Johnsson CA (eds) Climate Change 2001. Cambridge University Press, Cambridge, p 881 es_ES
dc.description.references Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481 es_ES
dc.description.references Landis TD, Dumroese RK, Haase DL (2010) The container tree nursery manual: Seedling processing, storage, and outplanting. vol. 7. USDA For. Serv., Agr. Handbook. 674, Washington, p 192 es_ES
dc.description.references Matesanz S, Valladares F (2013) Ecological and evolutionary responses of Mediterranean plants to global change. doi: 10.1016/j.envexpbot.2013.09.004 es_ES
dc.description.references Mayr S (2007) Limits in water relations. Trees at their upper limit. In: Wieser G, Tausz M (eds) Tree life limitation at the Alpine timberline. Springer, Berlin, pp 145–162 es_ES
dc.description.references McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739 es_ES
dc.description.references Metzger MJ, Bunce RGH, Leemans R, Viner D (2008) Projected environmental shifts under climate change: European trends and regional impacts. Environ Conserv 35(1):64–75 es_ES
dc.description.references Mulet JM, Martin DE, Loewith R, Hall MN (2006) Mutual antagonism of target of rapamycin and calcineurin signaling. J Biol Chem 281(44):33000–33007 es_ES
dc.description.references Oliet JA, Puértolas J, Planelles R, Jacobs DF (2013) Nutrient loading of forest tree seedlings to promote stress resistance and field performance: a Mediterranean perspective. New For 44:649–669. doi: 10.1007/s11056-013-9382-8 es_ES
dc.description.references Oliver J, Bogino S, Spiecker H, Bravo F (2012) Climate impact on growth dynamic and intra-annual density fluctuations in Aleppo pine (Pinus halepensis) trees of different crown classes. Dendro 30:35–47 es_ES
dc.description.references Persson B (1994) Effect of provenance transfer on survival in nine experimental series with Pinus sylvestris (L.) in northern Sweden. Scand J Forest Res 9:275–287 es_ES
dc.description.references Potter KM, Hargrove WW (2012) Determining suitable locations for seed transfer under climate change: a global quantitative method. New For 43(5–6):581–599 es_ES
dc.description.references Puértolas J, Gil L, Pardos JA (2005) Effects of nitrogen fertilization and temperature on frost hardiness of Aleppo pine (Pinus halepensis Mill.) seedlings assessed by chlorophyll fluorescence. Forestry 78(5):501–511 es_ES
dc.description.references Quézel P, Médail F (2003) Ecologie et biogéographie des forêts du basin méditerranéen. Elsevier (Collection Environnement), Paris, 573 p es_ES
dc.description.references Ræbild A, Graudal L, Khan SR (2003) Evaluation of a Prosopis cineraria provenance trial at Dagar Kotli, Pakistan. Trial no. 23 in the arid zone series Results and Documentation No. 28. Danida Forest Seed Centre, Humlebaek, Denmark es_ES
dc.description.references Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin II (2002) Intraspecific responses to climate change in Pinus sylvestris. Glob Change Biol 8:912–929 es_ES
dc.description.references Reich PB, Oleksyn J (2008) Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol Lett 11:588–597. doi: 10.1111/j.1461-0248.2008.01172.x es_ES
dc.description.references Sáenz-Romero C, Beaulieu J, Rehfeldt GE (2011) Altitudinal genetic variation among P. patula in growth chambers simulating global warming temperatures. Agrocien 45:399–411 es_ES
dc.description.references Schiller G, Atzmon N (2009) Performance of Aleppo pine (Pinus halepensis) provenances grown at the edge of the Negev desert: a review. J Arid Environ 73:1051–1057 es_ES
dc.description.references Schmidtling RC (1994) Use of provenance tests to predict response to climatic change: loblolly pine and Norway spruce. Tree Physiol 14:805–817 es_ES
dc.description.references Soto A, Robledo-Arnuncio JJ, González-Martínez J, Smouse BE, Alía R (2010) Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view. Mol Ecol 19(7):1396–1409 es_ES
dc.description.references Sultan SE, Spencer HG (2002) Metapopulation structure favors plasticity over local adaptation. Am Nat 160:271–283 es_ES
dc.description.references Tognetti R, Michelozzi M, Giovannelli A (1997) Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provenances. Tree Physiol 17:241–250 es_ES
dc.description.references United Nations, United Nations Economic Commission for Europe & Food and Agriculture Organization of the United Nations (2011) The European Forest Sector Outlook Study II 2010-2030. 107 pp. http://www.fao.org/docrep/016/ap406e/ap406e00.pdf es_ES
dc.description.references Vallejo VR, Smanis A, Chirino E, Fuentes D, Valdecantos A, Vilagrosa A (2012) Perspectives in dryland restoration: approaches for climate change adaptation. New For 43:561–579 es_ES
dc.description.references van Kleunen M, Fischer M (2007) Progress in the detection of costs of phenotypic plasticity in plants. New Phytol 176:727–730 es_ES
dc.description.references Vennetier M, Vilà B, Liang E, Guibal F, Taahbet A, Gadbin-Henry C (2007) Impact of climate change on pines forest productivity and on the shift of a bioclimatic limit in Mediterranean area. In: Leon e V, Lovreglio R (ed) Proceedings of the international workshop MEDPINE 3: conservation, regeneration and restoration of Mediterranean pines and their ecosystems. Bari : CIHEAM, 2007. pp 189–197 (Options Méditerranéennes : Série A. Séminaires Méditerranéen s; n. 75) es_ES
dc.description.references Villar-Salvador P, Puértolas J, Cuesta B, Peñuelas JL, Uscola M, Heredia-Guerrero N, Rey Benayas JM (2012) Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New For. doi 10.1007/s11056-012-9328-6 es_ES
dc.description.references Voltas J, Chambel MR, Prada MA, Ferrio JP (2008) Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees 22:759–769 es_ES
dc.description.references Williams MI, Dumroese RK (2013) Preparing for climate change: forestry and assisted migration. J For 111(4):287–297 es_ES
dc.description.references Zobel B, Talbert JJ (1984) Applied forest tree improvement. Wiley, New York, pp 75–116 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem