- -

A performance comparison of CUDA remote GPU virtualization frameworks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A performance comparison of CUDA remote GPU virtualization frameworks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Reaño González, Carlos es_ES
dc.contributor.author Silla Jiménez, Federico es_ES
dc.date.accessioned 2016-05-23T14:23:16Z
dc.date.available 2016-05-23T14:23:16Z
dc.date.issued 2015-09-08
dc.identifier.isbn 978-1-4673-6598-7
dc.identifier.issn 1552-5244
dc.identifier.uri http://hdl.handle.net/10251/64622
dc.description © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract Using GPUs reduces execution time of many applications but increases acquisition cost and power consumption. Furthermore, GPUs usually attain a relatively low utilization. In this context, remote GPU virtualization solutions were recently created to overcome the drawbacks of using GPUs. Currently, many different remote GPU virtualization frameworks exist, all of them presenting very different characteristics. These differences among them may lead to differences in performance. In this work we present a performance comparison among the only three CUDA remote GPU virtualization frameworks publicly available at no cost. Results show that performance greatly depends on the exact framework used, being the rCUDA virtualization solution the one that stands out among them. Furthermore, rCUDA doubles performance over CUDA for pageable memory copies. es_ES
dc.description.sponsorship This work was funded by the Generalitat Valenciana under Grant PROMETEOII/2013/009 of the PROMETEO program phase II. Authors are also grateful for the generous support provided by Mellanox Technologies
dc.format.extent 2 es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject GPGPU es_ES
dc.subject CUDA es_ES
dc.subject HPC es_ES
dc.subject Virtualization es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A performance comparison of CUDA remote GPU virtualization frameworks es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1109/CLUSTER.2015.76
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F009/ES/DESARROLLO DE LIBRERIAS PARA GESTIONAR EL ACCESO A DISPOSITIVOS REMOTOS COMPARTIDOS EN SERVIDORES DE ALTAS PRESTACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Reaño González, C.; Silla Jiménez, F. (2015). A performance comparison of CUDA remote GPU virtualization frameworks. IEEE. https://doi.org/10.1109/CLUSTER.2015.76 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 2015 IEEE International Conference on Cluster Computing (Cluster 2015) es_ES
dc.relation.conferencedate September 8-11, 2015 es_ES
dc.relation.conferenceplace Chicago, USA es_ES
dc.relation.publisherversion http://dx.doi.org/10.1109/CLUSTER.2015.76 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 294825 es_ES
dc.contributor.funder Generalitat Valenciana


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem