Mostrar el registro sencillo del ítem
dc.contributor.author | Borrell Tomás, María Amparo![]() |
es_ES |
dc.contributor.author | Rocha, V. G.![]() |
es_ES |
dc.contributor.author | Torrecillas, R.![]() |
es_ES |
dc.contributor.author | Fernandez, A.![]() |
es_ES |
dc.date.accessioned | 2016-05-24T11:03:29Z | |
dc.date.available | 2016-05-24T11:03:29Z | |
dc.date.issued | 2011-01-01 | |
dc.identifier.issn | 0266-3538 | |
dc.identifier.uri | http://hdl.handle.net/10251/64653 | |
dc.description.abstract | [EN] Alumina-reinforced carbon nanofiber nanocomposites were prepared using different routes; powders mixture, colloidal route and sol-gel process followed by spark plasma sintering (SPS). CNFs/xAl(2)O(3) (x = 10-50 vol.%) were prepared through nanopowders mixing in a high-energy attrition milling. The main limitations in the preparation of this kind of nanocomposites are related to the difficulty in obtaining materials with a homogeneous distribution of both phases and the different chemical nature of CNFs and Al(2)O(3), which causes poor interaction between them. A surface coating of CNFs by wet chemical routes with an alumina precursor is proposed as a very effective way to improve the interaction between CNFs and Al(2)O(3). An improvement of 50% in fracture strength was found for similar nanocomposite compositions when the surface coating was used. The improved mechanical properties of these nanocomposites are caused by stronger interaction between the CNFs and Al(2)O(3). Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This work has been carried out with financial support of National Plan Projects MAT2006-01783 and MAT2007-30989-E and the Regional Project FICYT PC07-021. A. Borrell, acknowledges the Spanish Ministry of Science and Innovation for Ph.D. grant. | |
dc.language | Español | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Composites Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nano composites | es_ES |
dc.subject | Carbon fibres | es_ES |
dc.subject | Coating | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Spark plasma sintering | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Surface coating on carbon nanofibers with alumina precursor by different synthesis routes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.compscitech.2010.09.011 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2006-01783/ES/MATERIALES CERAMICOS NANOESTRUCTURADOS TRANSPARENTES PARA APLICACIONES OPTICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2007-30989-E/ES/CERCANANO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FICYT//PC07-021/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Borrell Tomás, MA.; Rocha, VG.; Torrecillas, R.; Fernandez, A. (2011). Surface coating on carbon nanofibers with alumina precursor by different synthesis routes. Composites Science and Technology. 71(1):18-22. https://doi.org/10.1016/j.compscitech.2010.09.011 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.compscitech.2010.09.011 | es_ES |
dc.description.upvformatpinicio | 18 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 71 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 192832 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | |
dc.contributor.funder | Fundación para el Fomento en Asturias de la Investigación Científica Aplicada y la Tecnología |