- -

Domain adaptation problem in statistical machine translation systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Domain adaptation problem in statistical machine translation systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chinea Ríos, Mara es_ES
dc.contributor.author Sanchis Trilles, Germán es_ES
dc.contributor.author Casacuberta Nolla, Francisco es_ES
dc.date.accessioned 2016-05-25T09:03:03Z
dc.date.available 2016-05-25T09:03:03Z
dc.date.issued 2015
dc.identifier.issn 0922-6389
dc.identifier.uri http://hdl.handle.net/10251/64681
dc.description.abstract Globalization suddenly brings many people from different country to interact with each other, requiring them to be able to speak several languages. Human translators are slow and expensive, we find the necessity of developing machine translators to automatize the task. Several approaches of Machine translation have been develop by the researchers. In this work, we use the Statistical Machine Translation approach. Statistical Machine Translation systems perform poorly when applied on new domains. The domain adaptation problem has recently gained interest in Statistical Machine Translation. The basic idea is to improve the performance of the system trained and tuned with different domain than the one to be translated. This article studies different paradigms of domain adaptation. The results report improvements compared with a system trained only with in-domain data and trained with all the available data. es_ES
dc.language Inglés es_ES
dc.publisher IOS Press es_ES
dc.relation.ispartof Artificial Intelligence Research and Development es_ES
dc.relation.ispartofseries Frontiers in Artificial Intelligence and Applications;277
dc.rights Reserva de todos los derechos es_ES
dc.subject Statistical machine translation es_ES
dc.subject Domain adaptation es_ES
dc.subject Data selection es_ES
dc.subject Data combination es_ES
dc.subject Phrase tables es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Domain adaptation problem in statistical machine translation systems es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.3233/978-1-61499-578-4-205
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Investigación Pattern Recognition and Human Language Technology es_ES
dc.description.bibliographicCitation Chinea Ríos, M.; Sanchis Trilles, G.; Casacuberta Nolla, F. (2015). Domain adaptation problem in statistical machine translation systems. En Artificial Intelligence Research and Development. IOS Press. 205-213. doi:10.3233/978-1-61499-578-4-205 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3233/978-1-61499-578-4-205 es_ES
dc.description.upvformatpinicio 205 es_ES
dc.description.upvformatpfin 213 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 296807 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem