Mostrar el registro sencillo del ítem
dc.contributor.author | Chinea Ríos, Mara | es_ES |
dc.contributor.author | Sanchis Trilles, Germán | es_ES |
dc.contributor.author | Casacuberta Nolla, Francisco | es_ES |
dc.date.accessioned | 2016-05-25T09:03:03Z | |
dc.date.available | 2016-05-25T09:03:03Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0922-6389 | |
dc.identifier.uri | http://hdl.handle.net/10251/64681 | |
dc.description.abstract | Globalization suddenly brings many people from different country to interact with each other, requiring them to be able to speak several languages. Human translators are slow and expensive, we find the necessity of developing machine translators to automatize the task. Several approaches of Machine translation have been develop by the researchers. In this work, we use the Statistical Machine Translation approach. Statistical Machine Translation systems perform poorly when applied on new domains. The domain adaptation problem has recently gained interest in Statistical Machine Translation. The basic idea is to improve the performance of the system trained and tuned with different domain than the one to be translated. This article studies different paradigms of domain adaptation. The results report improvements compared with a system trained only with in-domain data and trained with all the available data. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOS Press | es_ES |
dc.relation.ispartof | Artificial Intelligence Research and Development | es_ES |
dc.relation.ispartofseries | Frontiers in Artificial Intelligence and Applications;277 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Statistical machine translation | es_ES |
dc.subject | Domain adaptation | es_ES |
dc.subject | Data selection | es_ES |
dc.subject | Data combination | es_ES |
dc.subject | Phrase tables | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Domain adaptation problem in statistical machine translation systems | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.3233/978-1-61499-578-4-205 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Investigación Pattern Recognition and Human Language Technology | es_ES |
dc.description.bibliographicCitation | Chinea Ríos, M.; Sanchis Trilles, G.; Casacuberta Nolla, F. (2015). Domain adaptation problem in statistical machine translation systems. En Artificial Intelligence Research and Development. IOS Press. 205-213. doi:10.3233/978-1-61499-578-4-205 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3233/978-1-61499-578-4-205 | es_ES |
dc.description.upvformatpinicio | 205 | es_ES |
dc.description.upvformatpfin | 213 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 296807 | es_ES |