- -

The effect of cross-linking on the molecular dynamics of the segmental and β Johari–Goldstein processes in polyvinylpyrrolidone-based copolymers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The effect of cross-linking on the molecular dynamics of the segmental and β Johari–Goldstein processes in polyvinylpyrrolidone-based copolymers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Redondo Foj, María Belén es_ES
dc.contributor.author Sanchis Sánchez, María Jesús es_ES
dc.contributor.author Ortiz Serna, Mª Pilar es_ES
dc.contributor.author Carsí Rosique, Marta es_ES
dc.contributor.author García, José Miguel es_ES
dc.contributor.author García, Félix Clemente es_ES
dc.date.accessioned 2016-05-25T09:39:15Z
dc.date.available 2016-05-25T09:39:15Z
dc.date.issued 2015-07
dc.identifier.issn 1744-683X
dc.identifier.uri http://hdl.handle.net/10251/64685
dc.description.abstract The effect of the cross-link density on the molecular dynamics of copolymers composed of vinylpyrrolidone (VP) and butyl acrylate (BA) was studied using differential scanning calorimetry (DSC) and dielectric relaxation spectroscopy (DRS). A single glass transition was detected by DSC measurements. The dielectric spectra exhibit conductive processes and three dipolar relaxations labeled as a, b and g in the decreasing order of temperatures. The cross-linker content affects both a and b processes, but the fastest g process is relatively unaffected. An increase of cross-linking produces a typical effect on the a process dynamics: (i) the glass transition temperature is increased, (ii) the dispersion is broadened, (iii) its strength is decreased and (iv) the relaxation times are increased. However, the b process, which possesses typical features of a pure Johari Goldstein relaxation, unexpectedly loses the intermolecular character for the highest cross-linker content. es_ES
dc.description.sponsorship B.R.F., M.J.S., P.O.S. and M.C. gratefully acknowledge CICYT for grant MAT2012-33483. F.G. and J.M.G. acknowledge the Spanish Ministerio de Economia y Competitividad-FEDER (MAT2014-54137-R) and the Junta de Castilla y Leon (BU232U13). en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Soft Matter es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.title The effect of cross-linking on the molecular dynamics of the segmental and β Johari–Goldstein processes in polyvinylpyrrolidone-based copolymers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c5sm00714c
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-33483/ES/NANOHILOS SEMICONDUCTORES Y DE POLIMEROS CON APLICACIONES EN ENERGIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-54137-R/ES/POLIMEROS ORGANICOS E HIBRIDOS. FILMS, FIBRAS Y RECUBRIMIENTOS COMO SENSORES DE SUSTANCIAS DE INTERES EN SEGURIDAD CIVIL, BIOMEDICO, ALIMENTARIO, AMBIENTAL E INDUSTRIAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Castilla y León//BU232U13/ES/POLÍMEROS FUNCIONALES ORGÁNICOS E HÍBRIDOS COMO MATERIALES AVANZADOS PARA APLICACIONES EN EL ÁMBITO DE LA PROTECCIÓN, LA INDUSTRIA, LA BIOMEDICINA Y EL MEDIO AMBIENTE./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología Eléctrica - Institut de Tecnologia Elèctrica es_ES
dc.description.bibliographicCitation Redondo Foj, MB.; Sanchis Sánchez, MJ.; Ortiz Serna, MP.; Carsí Rosique, M.; García, JM.; García, FC. (2015). The effect of cross-linking on the molecular dynamics of the segmental and β Johari–Goldstein processes in polyvinylpyrrolidone-based copolymers. Soft Matter. 11:7171-7180. https://doi.org/10.1039/c5sm00714c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/C5SM00714C es_ES
dc.description.upvformatpinicio 7171 es_ES
dc.description.upvformatpfin 7180 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.relation.senia 301578 es_ES
dc.identifier.eissn 1744-6848
dc.contributor.funder Junta de Castilla y León es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references V. Bühler , Polyvinylpyrrolidone Excipients for Pharmaceuticals: Povidone, Crospovidone and Copovidone , Springer , Berlin , 2005 es_ES
dc.description.references Haaf, F., Sanner, A., & Straub, F. (1985). Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses. Polymer Journal, 17(1), 143-152. doi:10.1295/polymj.17.143 es_ES
dc.description.references Gallardo, A., Rocío Lemus, A., San Román, J., Cifuentes, A., & Díez-Masa, J.-C. (1999). Micellar Electrokinetic Chromatography Applied to Copolymer Systems with Heterogeneous Distribution. Macromolecules, 32(3), 610-617. doi:10.1021/ma981144p es_ES
dc.description.references Devine, D. M., & Higginbotham, C. L. (2005). Synthesis and characterisation of chemically crosslinked N-vinyl pyrrolidinone (NVP) based hydrogels. European Polymer Journal, 41(6), 1272-1279. doi:10.1016/j.eurpolymj.2004.12.022 es_ES
dc.description.references Devine, D. M., Devery, S. M., Lyons, J. G., Geever, L. M., Kennedy, J. E., & Higginbotham, C. L. (2006). Multifunctional polyvinylpyrrolidinone-polyacrylic acid copolymer hydrogels for biomedical applications. International Journal of Pharmaceutics, 326(1-2), 50-59. doi:10.1016/j.ijpharm.2006.07.008 es_ES
dc.description.references Jin, S., Gu, J., Shi, Y., Shao, K., Yu, X., & Yue, G. (2013). Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature. European Polymer Journal, 49(7), 1871-1880. doi:10.1016/j.eurpolymj.2013.04.022 es_ES
dc.description.references Borns, M. A., Kalakkunnath, S., Kalika, D. S., Kusuma, V. A., & Freeman, B. D. (2007). Dynamic relaxation characteristics of crosslinked poly(ethylene oxide) copolymer networks: Influence of short chain pendant groups. Polymer, 48(25), 7316-7328. doi:10.1016/j.polymer.2007.10.020 es_ES
dc.description.references Qazvini, N. T., & Mohammadi, N. (2005). Dynamic mechanical analysis of segmental relaxation in unsaturated polyester resin networks: Effect of styrene content. Polymer, 46(21), 9088-9096. doi:10.1016/j.polymer.2005.06.118 es_ES
dc.description.references Cook, W. D., Scott, T. F., Quay-Thevenon, S., & Forsythe, J. S. (2004). Dynamic mechanical thermal analysis of thermally stable and thermally reactive network polymers. Journal of Applied Polymer Science, 93(3), 1348-1359. doi:10.1002/app.20569 es_ES
dc.description.references Viciosa, M. T., Rouzé, N., Dionísio, M., & Gómez Ribelles, J. L. (2007). Dielectric and mechanical relaxation processes in methyl acrylate/tri-ethyleneglycol dimethacrylate copolymer networks. European Polymer Journal, 43(4), 1516-1529. doi:10.1016/j.eurpolymj.2007.01.043 es_ES
dc.description.references Jobish, J., Charoen, N., & Praveen, P. (2012). Dielectric properties and AC conductivity studies of novel NR/PVA full-interpenetrating polymer networks. Journal of Non-Crystalline Solids, 358(8), 1113-1119. doi:10.1016/j.jnoncrysol.2012.02.003 es_ES
dc.description.references Bekin, S., Sarmad, S., Gürkan, K., Keçeli, G., & Gürdağ, G. (2014). Synthesis, characterization and bending behavior of electroresponsive sodium alginate/poly(acrylic acid) interpenetrating network films under an electric field stimulus. Sensors and Actuators B: Chemical, 202, 878-892. doi:10.1016/j.snb.2014.06.051 es_ES
dc.description.references F. Kremer and A.Schönhals , Broadband Dielectric Spectroscopy , Springer-Verlag , Berlin Heidelberg, New York , 2003 es_ES
dc.description.references Roland, C. M. (1994). Constraints on Local Segmental Motion in Poly(vinylethylene) Networks. Macromolecules, 27(15), 4242-4247. doi:10.1021/ma00093a027 es_ES
dc.description.references Patil, P. N., Rath, S. K., Sharma, S. K., Sudarshan, K., Maheshwari, P., Patri, M., … Pujari, P. K. (2013). Free volumes and structural relaxations in diglycidyl ether of bisphenol-A based epoxy–polyether amine networks. Soft Matter, 9(13), 3589. doi:10.1039/c3sm27525f es_ES
dc.description.references Casalini, R., & Roland, C. M. (2010). Effect of crosslinking on the secondary relaxation in polyvinylethylene. Journal of Polymer Science Part B: Polymer Physics, 48(5), 582-587. doi:10.1002/polb.21925 es_ES
dc.description.references Carsi, M., Sanchis, M. J., Diaz-Calleja, R., Riande, E., & Nugent, M. J. D. (2012). Effect of Cross-Linking on the Molecular Motions and Nanodomains Segregation in Polymethacrylates Containing Aliphatic Alcohol Ether Residues. Macromolecules, 45(8), 3571-3580. doi:10.1021/ma202811p es_ES
dc.description.references Carsí, M., Sanchis, M. J., Díaz-Calleja, R., Riande, E., & Nugent, M. J. D. (2013). Effect of slight crosslinking on the mechanical relaxation behavior of poly(2-ethoxyethyl methacrylate) chains. European Polymer Journal, 49(6), 1495-1502. doi:10.1016/j.eurpolymj.2012.12.012 es_ES
dc.description.references Kalakkunnath, S., Kalika, D. S., Lin, H., Raharjo, R. D., & Freeman, B. D. (2007). Molecular Dynamics of Poly(ethylene glycol) and Poly(propylene glycol) Copolymer Networks by Broadband Dielectric Spectroscopy. Macromolecules, 40(8), 2773-2781. doi:10.1021/ma070016a es_ES
dc.description.references Sabater i Serra, R., Escobar Ivirico, J. L., Meseguer Dueñas, J. M., Balado, A. A., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2009). Segmental dynamics in poly(ε-caprolactone)/poly(L-lactide) copolymer networks. Journal of Polymer Science Part B: Polymer Physics, 47(2), 183-193. doi:10.1002/polb.21629 es_ES
dc.description.references Nogales, A., Sanz, A., Ezquerra, T. A., Quintana, R., & Muñoz-Guerra, S. (2006). Molecular dynamics of poly(butylene tert-butyl isophthalate) and its copolymers with poly(butylene terephthalate) as revealed by broadband dielectric spectroscopy. Polymer, 47(20), 7078-7084. doi:10.1016/j.polymer.2006.07.044 es_ES
dc.description.references Sanz, A., Nogales, A., Ezquerra, T. A., Lotti, N., & Finelli, L. (2004). Cooperativity of theβ-relaxations in aromatic polymers. Physical Review E, 70(2). doi:10.1103/physreve.70.021502 es_ES
dc.description.references Johari, G. P., & Goldstein, M. (1970). Viscous Liquids and the Glass Transition. II. Secondary Relaxations in Glasses of Rigid Molecules. The Journal of Chemical Physics, 53(6), 2372-2388. doi:10.1063/1.1674335 es_ES
dc.description.references Johari, G. P., & Smyth, C. P. (1972). Dielectric Relaxation of Rigid Molecules in Supercooled Decalin. The Journal of Chemical Physics, 56(9), 4411-4418. doi:10.1063/1.1677882 es_ES
dc.description.references Paluch, M., Pawlus, S., Hensel-Bielowka, S., Kaminska, E., Prevosto, D., Capaccioli, S., … Ngai, K. L. (2005). Two secondary modes in decahydroisoquinoline: Which one is the true Johari Goldstein process? The Journal of Chemical Physics, 122(23), 234506. doi:10.1063/1.1931669 es_ES
dc.description.references Ngai, K. L. (1998). Relation between some secondary relaxations and the α relaxations in glass-forming materials according to the coupling model. The Journal of Chemical Physics, 109(16), 6982-6994. doi:10.1063/1.477334 es_ES
dc.description.references Ngai, K. L., & Paluch, M. (2004). Classification of secondary relaxation in glass-formers based on dynamic properties. The Journal of Chemical Physics, 120(2), 857-873. doi:10.1063/1.1630295 es_ES
dc.description.references Casalini, R., Ngai, K. L., & Roland, C. M. (2003). Connection between the high-frequency crossover of the temperature dependence of the relaxation time and the change of intermolecular coupling in glass-forming liquids. Physical Review B, 68(1). doi:10.1103/physrevb.68.014201 es_ES
dc.description.references Ngai, K. L., & Tsang, K. Y. (1999). Similarity of relaxation in supercooled liquids and interacting arrays of oscillators. Physical Review E, 60(4), 4511-4517. doi:10.1103/physreve.60.4511 es_ES
dc.description.references Donth, E. (1996). Characteristic length of the glass transition. Journal of Polymer Science Part B: Polymer Physics, 34(17), 2881-2892. doi:10.1002/(sici)1099-0488(199612)34:17<2881::aid-polb3>3.0.co;2-u es_ES
dc.description.references Williams, G. (s. f.). Molecular aspects of multiple dielectric relaxation processes in solid polymers. Electric Phenomena in Polymer Science, 59-92. doi:10.1007/3-540-09456-3_3 es_ES
dc.description.references Ngai, K., & Capaccioli, S. (2004). Relation between the activation energy of the Johari-Goldstein β relaxation and T_{g} of glass formers. Physical Review E, 69(3). doi:10.1103/physreve.69.031501 es_ES
dc.description.references Casalini, R., & Roland, C. M. (2003). Pressure Evolution of the Excess Wing in a Type-BGlass Former. Physical Review Letters, 91(1). doi:10.1103/physrevlett.91.015702 es_ES
dc.description.references Redondo-Foj, B., Carsí, M., Ortiz-Serna, P., Sanchis, M. J., García, F., & García, J. M. (2013). Relaxational study of poly(vinylpyrrolidone-co-butyl acrylate) membrane by dielectric and dynamic mechanical spectroscopy. Journal of Physics D: Applied Physics, 46(29), 295304. doi:10.1088/0022-3727/46/29/295304 es_ES
dc.description.references Redondo-Foj, B., Carsí, M., Ortiz-Serna, P., Sanchis, M. J., Vallejos, S., García, F., & García, J. M. (2014). Effect of the Dipole–Dipole Interactions in the Molecular Dynamics of Poly(vinylpyrrolidone)-Based Copolymers. Macromolecules, 47(15), 5334-5346. doi:10.1021/ma500800a es_ES
dc.description.references Bershtein, V. A., Egorova, L. M., Yakushev, P. N., Pissis, P., Sysel, P., & Brozova, L. (2002). Molecular dynamics in nanostructured polyimide-silica hybrid materials and their thermal stability. Journal of Polymer Science Part B: Polymer Physics, 40(10), 1056-1069. doi:10.1002/polb.10162 es_ES
dc.description.references Alves, N. M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Enthalpy relaxation studies in polymethyl methacrylate networks with different crosslinking degrees. Polymer, 46(2), 491-504. doi:10.1016/j.polymer.2004.11.016 es_ES
dc.description.references Scott, T. F., Cook, W. D., & Forsythe, J. S. (2002). Kinetics and network structure of thermally cured vinyl ester resins. European Polymer Journal, 38(4), 705-716. doi:10.1016/s0014-3057(01)00244-0 es_ES
dc.description.references Wagner, K. W. (1914). Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Archiv für Elektrotechnik, 2(9), 371-387. doi:10.1007/bf01657322 es_ES
dc.description.references Hodge, I. M., Ngai, K. L., & Moynihan, C. T. (2005). Comments on the electric modulus function. Journal of Non-Crystalline Solids, 351(2), 104-115. doi:10.1016/j.jnoncrysol.2004.07.089 es_ES
dc.description.references Williams, G., & Watts, D. C. (1970). Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Transactions of the Faraday Society, 66, 80. doi:10.1039/tf9706600080 es_ES
dc.description.references Williams, G., Watts, D. C., Dev, S. B., & North, A. M. (1971). Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Transactions of the Faraday Society, 67, 1323. doi:10.1039/tf9716701323 es_ES
dc.description.references Havriliak, S., & Negami, S. (1967). A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 8, 161-210. doi:10.1016/0032-3861(67)90021-3 es_ES
dc.description.references Havriliak, S., & Negami, S. (2007). A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 14(1), 99-117. doi:10.1002/polc.5070140111 es_ES
dc.description.references S. Havriliak and S.Negami , Dielectric and Mechanical Relaxation in Materials , Hanser , Munich , 1997 , p. 57 es_ES
dc.description.references Glatz-Reichenbach, J. K. W., Sorriero, L., & Fitzgerald, J. J. (1994). Influence of Crosslinking on the Molecular Relaxation of an Amorphous Copolymer Near Its Glass-Transition Temperature. Macromolecules, 27(6), 1338-1343. doi:10.1021/ma00084a010 es_ES
dc.description.references Cole, K. S., & Cole, R. H. (1941). Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. The Journal of Chemical Physics, 9(4), 341-351. doi:10.1063/1.1750906 es_ES
dc.description.references Boyd, R. H. (1985). Relaxation processes in crystalline polymers: experimental behaviour — a review. Polymer, 26(3), 323-347. doi:10.1016/0032-3861(85)90192-2 es_ES
dc.description.references Laredo, E., Grimau, M., Sánchez, F., & Bello, A. (2003). Water Absorption Effect on the Dynamic Properties of Nylon-6 by Dielectric Spectroscopy. Macromolecules, 36(26), 9840-9850. doi:10.1021/ma034954w es_ES
dc.description.references Huo, P., & Cebe, P. (1992). Dielectric relaxation of poly(phenylene sulfide) containing a fraction of rigid amorphous phase. Journal of Polymer Science Part B: Polymer Physics, 30(3), 239-250. doi:10.1002/polb.1992.090300303 es_ES
dc.description.references Noda, N., Lee, Y.-H., Bur, A. J., Prabhu, V. M., Snyder, C. R., Roth, S. C., & McBrearty, M. (2005). Dielectric properties of nylon 6/clay nanocomposites from on-line process monitoring and off-line measurements. Polymer, 46(18), 7201-7217. doi:10.1016/j.polymer.2005.06.046 es_ES
dc.description.references Ryabov, Y. E., Nuriel, H., Marom, G., & Feldman, Y. (2002). Relaxation peak broadening and polymer chain dynamics in aramid-fiber-reinforced nylon-66 microcomposites. Journal of Polymer Science Part B: Polymer Physics, 41(3), 217-223. doi:10.1002/polb.10384 es_ES
dc.description.references Janik, P., Paluch, M., Ziolo, J., Sulkowski, W., & Nikiel, L. (2001). Low-frequency dielectric relaxation in rubber. Physical Review E, 64(4). doi:10.1103/physreve.64.042502 es_ES
dc.description.references Feldman, Y., Puzenko, A., & Ryabov, Y. (2002). Non-Debye dielectric relaxation in complex materials. Chemical Physics, 284(1-2), 139-168. doi:10.1016/s0301-0104(02)00545-1 es_ES
dc.description.references Ortiz-Serna, P., Díaz-Calleja, R., Sanchis, M. J., Floudas, G., Nunes, R. C., Martins, A. F., & Visconte, L. L. (2010). Dynamics of Natural Rubber as a Function of Frequency, Temperature, and Pressure. A Dielectric Spectroscopy Investigation. Macromolecules, 43(11), 5094-5102. doi:10.1021/ma1004869 es_ES
dc.description.references Ortiz-Serna, P., Díaz-Calleja, R., Sanchis, M. J., Riande, E., Nunes, R., Martins, A., & Visconte, L. (2011). Dielectric spectroscopy of natural rubber-cellulose II nanocomposites. Journal of Non-Crystalline Solids, 357(2), 598-604. doi:10.1016/j.jnoncrysol.2010.06.044 es_ES
dc.description.references E. Riande and R.Díaz-Calleja , Electrical Properties of Polymers , Marcel Dekker , New York , 2004 es_ES
dc.description.references Fulcher, G. S. (1925). ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES. Journal of the American Ceramic Society, 8(6), 339-355. doi:10.1111/j.1151-2916.1925.tb16731.x es_ES
dc.description.references Tammann, G., & Hesse, W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121 es_ES
dc.description.references Lunkenheimer, P., Schneider, U., Brand, R., & Loid, A. (2000). Glassy dynamics. Contemporary Physics, 41(1), 15-36. doi:10.1080/001075100181259 es_ES
dc.description.references Angell, C. A. (1995). Formation of Glasses from Liquids and Biopolymers. Science, 267(5206), 1924-1935. doi:10.1126/science.267.5206.1924 es_ES
dc.description.references C. A. Angell , Complex Behavior of Glassy Systems; Proceedings of the XIV Sitges Conference , Sitges, Barcelona, Spain, 1996 es_ES
dc.description.references F. J. Bermejo , H. E.Fischer , M. A.Ramos , A.de Andrés , J.Dawidowski and V.Fayos , in Complex Behaviour of Glassy Systems , Springer Lecture Notes in Physics , ed. M. Rubí and C. Pérez-Vicente , Springer , Berlin-Heidelberg , 1997 es_ES
dc.description.references Böhmer, R., Ngai, K. L., Angell, C. A., & Plazek, D. J. (1993). Nonexponential relaxations in strong and fragile glass formers. The Journal of Chemical Physics, 99(5), 4201-4209. doi:10.1063/1.466117 es_ES
dc.description.references Böhmer, R., & Angell, C. A. (1992). Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids. Physical Review B, 45(17), 10091-10094. doi:10.1103/physrevb.45.10091 es_ES
dc.description.references Böhmer, R., & Angell, C. A. (1993). Elastic and viscoelastic properties of amorphous selenium and identification of the phase transition between ring and chain structures. Physical Review B, 48(9), 5857-5864. doi:10.1103/physrevb.48.5857 es_ES
dc.description.references Merino, E. G., Atlas, S., Raihane, M., Belfkira, A., Lahcini, M., Hult, A., … Correia, N. T. (2011). Molecular dynamics of poly(ATRIF) homopolymer and poly(AN-co-ATRIF) copolymer investigated by dielectric relaxation spectroscopy. European Polymer Journal, 47(7), 1429-1446. doi:10.1016/j.eurpolymj.2011.04.006 es_ES
dc.description.references Angell, C. . (1991). Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. Journal of Non-Crystalline Solids, 131-133, 13-31. doi:10.1016/0022-3093(91)90266-9 es_ES
dc.description.references Qin, Q., & McKenna, G. B. (2006). Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids. Journal of Non-Crystalline Solids, 352(28-29), 2977-2985. doi:10.1016/j.jnoncrysol.2006.04.014 es_ES
dc.description.references Kohlrausch, R. (1854). Theorie des elektrischen Rückstandes in der Leidener Flasche. Annalen der Physik und Chemie, 167(2), 179-214. doi:10.1002/andp.18541670203 es_ES
dc.description.references Zorn, R. (1999). Applicability of distribution functions for the Havriliak-Negami spectral function. Journal of Polymer Science Part B: Polymer Physics, 37(10), 1043-1044. doi:10.1002/(sici)1099-0488(19990515)37:10<1043::aid-polb9>3.0.co;2-h es_ES
dc.description.references Ngai, K. L., & Roland, C. M. (1993). Intermolecular cooperativity and the temperature dependence of segmental relaxation in semicrystalline polymers. Macromolecules, 26(11), 2688-2690. doi:10.1021/ma00063a008 es_ES
dc.description.references K. L. Ngai , Relaxation and diffusion in complex systems , Springer , Berlin , 2011 es_ES
dc.description.references Ikeda, M., & Aniya, M. (2010). Correlation between fragility and cooperativity in bulk metallic glass-forming liquids. Intermetallics, 18(10), 1796-1799. doi:10.1016/j.intermet.2010.01.009 es_ES
dc.description.references Patkowski, A., Paluch, M., & Gapiński, J. (2003). Relationship between T0, Tg and their pressure dependence for supercooled liquids. Journal of Non-Crystalline Solids, 330(1-3), 259-263. doi:10.1016/j.jnoncrysol.2003.09.002 es_ES
dc.description.references Delpouve, N., Delbreilh, L., Stoclet, G., Saiter, A., & Dargent, E. (2014). Structural Dependence of the Molecular Mobility in the Amorphous Fractions of Polylactide. Macromolecules, 47(15), 5186-5197. doi:10.1021/ma500839p es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem