- -

A multidimensional dynamical approach to iterative methods with memory

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A multidimensional dynamical approach to iterative methods with memory

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos, Beatriz es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Vindel, Pura es_ES
dc.date.accessioned 2016-05-25T10:20:35Z
dc.date.available 2016-05-25T10:20:35Z
dc.date.issued 2015-11-15
dc.identifier.issn 0096-3003
dc.identifier.uri http://hdl.handle.net/10251/64691
dc.description.abstract [EN] A dynamical approach on the dynamics of iterative methods with memory for solving nonlinear equations is made. We have designed new methods with memory from Steffensen’ or Traub’s schemes, as well as from a parametric family of iterative procedures of third- and fourth-order of convergence. We study the local order of convergence of the new iterative methods with memory. We define each iterative method with memory as a discrete dynamical system and we analyze the stability of the fixed points of its rational operator associated on quadratic polynomials. As far as we know, there is no dynamical study on iterative methods with memory and the techniques of complex dynamics used in schemes without memory are not useful in this context. So, we adapt real multidimensional dynamical tools to afford this task. The dynamical behavior of Secant method and the versions of Steffensen’ and Traub’s schemes with memory, applied on quadratic polynomials, are analyzed. Different kinds of behavior occur, being in general very stable but pathologic cases as attracting strange fixed points are also found. Finally, a modified parametric family of order four, applied on quadratic polynomials, is also studied, showing the bifurcations diagrams and the appearance of chaos. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P. en_EN
dc.language Español es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Mathematics and Computation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Iterative method with memory es_ES
dc.subject Basin of attraction es_ES
dc.subject Dynamical plane es_ES
dc.subject Stability es_ES
dc.subject Bifurcation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A multidimensional dynamical approach to iterative methods with memory es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.amc.2015.09.056
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Campos, B.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vindel, P. (2015). A multidimensional dynamical approach to iterative methods with memory. Applied Mathematics and Computation. 271:701-715. https://doi.org/10.1016/j.amc.2015.09.056 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1016/j.amc.2015.09.056 es_ES
dc.description.upvformatpinicio 701 es_ES
dc.description.upvformatpfin 715 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 271 es_ES
dc.relation.senia 296766 es_ES
dc.identifier.eissn 1873-5649
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem