- -

A stable family with high order of convergence for solving nonlinear equations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A stable family with high order of convergence for solving nonlinear equations

Show full item record

Cordero Barbero, A.; Lotfi, T.; Mahdiani, K.; Torregrosa Sánchez, JR. (2015). A stable family with high order of convergence for solving nonlinear equations. Applied Mathematics and Computation. 254:240-251. doi:10.1016/j.amc.2014.12.141

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64694

Files in this item

Item Metadata

Title: A stable family with high order of convergence for solving nonlinear equations
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] Recently, Li et al. (2014) have published a new family of iterative methods, without memory, with order of convergence five or six, which are not optimal in the sense of Kung and Traub’s conjecture. Therefore, we ...[+]
Subjects: Nonlinear equations , Optimal iterative methods , Efficiency index , Parameter space , Basin of attraction , Stability
Copyrigths: Reserva de todos los derechos
Source:
Applied Mathematics and Computation. (issn: 0096-3003 ) (eissn: 1873-5649 )
DOI: 10.1016/j.amc.2014.12.141
Publisher:
Elsevier
Publisher version: http://dx.doi.org/10.1016/j.amc.2014.12.141
Thanks:
This research was supported by Islamic Azad University, Hamedan Branch and Ministerio de Ciencia y Tecnología MTM2011-28636-C02-02.
Type: Artículo

This item appears in the following Collection(s)

Show full item record