- -

Visible-Light Photoresponse of Gold Nanoparticles Supported on TiO2: A Combined Photocatalytic, Photoelectrochemical, and Transient Spectroscopy Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Visible-Light Photoresponse of Gold Nanoparticles Supported on TiO2: A Combined Photocatalytic, Photoelectrochemical, and Transient Spectroscopy Study

Mostrar el registro completo del ítem

Baldovi, HG.; Albarracin, F.; Atienzar Corvillo, PE.; Ferrer Ribera, RB.; Alvaro Rodríguez, MM.; García Gómez, H. (2015). Visible-Light Photoresponse of Gold Nanoparticles Supported on TiO2: A Combined Photocatalytic, Photoelectrochemical, and Transient Spectroscopy Study. ChemPhysChem. 16(2):335-341. https://doi.org/10.1002/cphc.201402660

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64701

Ficheros en el ítem

Metadatos del ítem

Título: Visible-Light Photoresponse of Gold Nanoparticles Supported on TiO2: A Combined Photocatalytic, Photoelectrochemical, and Transient Spectroscopy Study
Autor: Baldovi, Hermes G. Albarracin, Ferran Atienzar Corvillo, Pedro Enrique Ferrer Ribera, Rosa Belén Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
In the context of gaining understanding on the origin of the visible-​light photoresponse of TiO2 contg. gold nanoparticles, the photocurrent spectra and photocatalytic H2 evolution of titania (P25) and Au-​P25 ...[+]
Palabras clave: Visible Light photoresponse , Gold nanoparticle supported titania , Combined photocatalyst
Derechos de uso: Cerrado
Fuente:
ChemPhysChem. (issn: 1439-4235 ) (eissn: 1439-7641 )
DOI: 10.1002/cphc.201402660
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/cphc.201402660
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F013/
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32319) and the Generalidad Valenciana (Prometeo 2012/013) is gratefully acknowledged.
Tipo: Artículo

References

Centi, G., & Perathoner, S. (2010). Towards Solar Fuels from Water and CO2. ChemSusChem, 3(2), 195-208. doi:10.1002/cssc.200900289

Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209b

Hammarström, L. (2009). Artificial Photosynthesis and Solar Fuels. Accounts of Chemical Research, 42(12), 1859-1860. doi:10.1021/ar900267k [+]
Centi, G., & Perathoner, S. (2010). Towards Solar Fuels from Water and CO2. ChemSusChem, 3(2), 195-208. doi:10.1002/cssc.200900289

Gust, D., Moore, T. A., & Moore, A. L. (2009). Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research, 42(12), 1890-1898. doi:10.1021/ar900209b

Hammarström, L. (2009). Artificial Photosynthesis and Solar Fuels. Accounts of Chemical Research, 42(12), 1859-1860. doi:10.1021/ar900267k

Roy, S. C., Varghese, O. K., Paulose, M., & Grimes, C. A. (2010). Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano, 4(3), 1259-1278. doi:10.1021/nn9015423

Serpone, N., Lawless, D., & Terzian, R. (1992). Solar fuels: Status and perspectives. Solar Energy, 49(4), 221-234. doi:10.1016/0038-092x(92)90001-q

Liu, G., Hoivik, N., Wang, K., & Jakobsen, H. (2012). Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Solar Energy Materials and Solar Cells, 105, 53-68. doi:10.1016/j.solmat.2012.05.037

Navalón, S., Dhakshinamoorthy, A., Álvaro, M., & Garcia, H. (2013). Photocatalytic CO2Reduction using Non-Titanium Metal Oxides and Sulfides. ChemSusChem, 6(4), 562-577. doi:10.1002/cssc.201200670

Corma, A., & Garcia, H. (2013). Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis, 308, 168-175. doi:10.1016/j.jcat.2013.06.008

Asahi, R. (2001). Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science, 293(5528), 269-271. doi:10.1126/science.1061051

Ihara, T. (2003). Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Applied Catalysis B: Environmental, 42(4), 403-409. doi:10.1016/s0926-3373(02)00269-2

Kisch, H., & Macyk, W. (2002). Visible-Light Photocatalysis by Modified Titania. ChemPhysChem, 3(5), 399. doi:10.1002/1439-7641(20020517)3:5<399::aid-cphc399>3.0.co;2-h

Mrowetz, M., Balcerski, W., Colussi, A. J., & Hoffmann, M. R. (2004). Oxidative Power of Nitrogen-Doped TiO2Photocatalysts under Visible Illumination. The Journal of Physical Chemistry B, 108(45), 17269-17273. doi:10.1021/jp0467090

Rehman, S., Ullah, R., Butt, A. M., & Gohar, N. D. (2009). Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Materials, 170(2-3), 560-569. doi:10.1016/j.jhazmat.2009.05.064

Primo, A., Corma, A., & García, H. (2011). Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13(3), 886-910. doi:10.1039/c0cp00917b

Li, X. Z., & Li, F. B. (2001). Study of Au/Au3+-TiO2Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment. Environmental Science & Technology, 35(11), 2381-2387. doi:10.1021/es001752w

Liu, Z., Hou, W., Pavaskar, P., Aykol, M., & Cronin, S. B. (2011). Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination. Nano Letters, 11(3), 1111-1116. doi:10.1021/nl104005n

Subramanian, V., Wolf, E., & Kamat, P. V. (2001). Semiconductor−Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2Films? The Journal of Physical Chemistry B, 105(46), 11439-11446. doi:10.1021/jp011118k

Tian, Y., & Tatsuma, T. (2005). Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2Films Loaded with Gold Nanoparticles. Journal of the American Chemical Society, 127(20), 7632-7637. doi:10.1021/ja042192u

Primo, A., Marino, T., Corma, A., Molinari, R., & García, H. (2011). Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 133(18), 6930-6933. doi:10.1021/ja2011498

Alvaro, M., Cojocaru, B., Ismail, A. A., Petrea, N., Ferrer, B., Harraz, F. A., … Garcia, H. (2010). Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Applied Catalysis B: Environmental, 99(1-2), 191-197. doi:10.1016/j.apcatb.2010.06.019

Marino, T., Molinari, R., & García, H. (2013). Selectivity of gold nanoparticles on the photocatalytic activity of TiO2 for the hydroxylation of benzene by water. Catalysis Today, 206, 40-45. doi:10.1016/j.cattod.2012.01.030

Neaţu, Ş., Cojocaru, B., Pârvulescu, V. I., Şomoghi, V., Alvaro, M., & Garcia, H. (2010). Visible-light C–heteroatom bond cleavage and detoxification of chemical warfare agents using titania-supported gold nanoparticles as photocatalyst. Journal of Materials Chemistry, 20(20), 4050. doi:10.1039/c0jm00345j

Rayalu, S. S., Jose, D., Joshi, M. V., Mangrulkar, P. A., Shrestha, K., & Klabunde, K. (2013). Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: Enhancement in photocatalytic activity due to SPR effect. Applied Catalysis B: Environmental, 142-143, 684-693. doi:10.1016/j.apcatb.2013.05.057

Tanaka, A., Fuku, K., Nishi, T., Hashimoto, K., & Kominami, H. (2013). Functionalization of Au/TiO2Plasmonic Photocatalysts with Pd by Formation of a Core–Shell Structure for Effective Dechlorination of Chlorobenzene under Irradiation of Visible Light. The Journal of Physical Chemistry C, 117(33), 16983-16989. doi:10.1021/jp403855p

Gomes Silva, C., Juárez, R., Marino, T., Molinari, R., & García, H. (2011). Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133(3), 595-602. doi:10.1021/ja1086358

Bian, Z., Tachikawa, T., Zhang, P., Fujitsuka, M., & Majima, T. (2013). Au/TiO2 Superstructure-Based Plasmonic Photocatalysts Exhibiting Efficient Charge Separation and Unprecedented Activity. Journal of the American Chemical Society, 136(1), 458-465. doi:10.1021/ja410994f

Bamwenda, G. R., Tsubota, S., Kobayashi, T., & Haruta, M. (1994). Photoinduced hydrogen production from an aqueous solution of ethylene glycol over ultrafine gold supported on TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 77(1), 59-67. doi:10.1016/1010-6030(94)80009-x

Abad, A., Corma, A., & García, H. (2007). Catalyst Parameters Determining Activity and Selectivity of Supported Gold Nanoparticles for the Aerobic Oxidation of Alcohols: The Molecular Reaction Mechanism. Chemistry - A European Journal, 14(1), 212-222. doi:10.1002/chem.200701263

Haruta, M., Kobayashi, T., Sano, H., & Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters, 16(2), 405-408. doi:10.1246/cl.1987.405

O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0

Das, S. K., Song, B., Mahler, A., Nesterov, V. N., Wilson, A. K., Ito, O., & D’Souza, F. (2014). Electron Transfer Studies of High Potential Zinc Porphyrin–Fullerene Supramolecular Dyads. The Journal of Physical Chemistry C, 118(8), 3994-4006. doi:10.1021/jp4118166

Navalon, S., de Miguel, M., Martin, R., Alvaro, M., & Garcia, H. (2011). Enhancement of the Catalytic Activity of Supported Gold Nanoparticles for the Fenton Reaction by Light. Journal of the American Chemical Society, 133(7), 2218-2226. doi:10.1021/ja108816p

Cojocaru, B., Neaţu, Ş., Sacaliuc-Pârvulescu, E., Lévy, F., Pârvulescu, V. I., & Garcia, H. (2011). Influence of gold particle size on the photocatalytic activity for acetone oxidation of Au/TiO2 catalysts prepared by dc-magnetron sputtering. Applied Catalysis B: Environmental, 107(1-2), 140-149. doi:10.1016/j.apcatb.2011.07.007

Linic, S., Christopher, P., & Ingram, D. B. (2011). Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 10(12), 911-921. doi:10.1038/nmat3151

Naya, S., Teranishi, M., Isobe, T., & Tada, H. (2010). Light wavelength-switchable photocatalytic reaction by gold nanoparticle-loaded titanium(iv) dioxide. Chem. Commun., 46(5), 815-817. doi:10.1039/b918444a

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem