Mostrar el registro sencillo del ítem
dc.contributor.author | Tarazona Campos, Sonia | es_ES |
dc.contributor.author | PRADO-LÓPEZ, Sonia | es_ES |
dc.contributor.author | Dopazo, Joaquín | es_ES |
dc.contributor.author | Ferrer Riquelme, Alberto José | es_ES |
dc.contributor.author | CONESA, A. | es_ES |
dc.date.accessioned | 2016-05-26T10:03:09Z | |
dc.date.available | 2016-05-26T10:03:09Z | |
dc.date.issued | 2012-01-15 | |
dc.identifier.issn | 0169-7439 | |
dc.identifier.uri | http://hdl.handle.net/10251/64780 | |
dc.description.abstract | [EN] Dimension reduction techniques are used to explore genomic data. Due to the large number of variables (genes) included in this kind of studies, variable selection methods are needed to identify the most responsive genes in order to get a better interpretation of the results or to conduct more specific experiments. These methods should be consistent with the amount of signal in the data. For this purpose, we introduce a novel selection strategy called minAS and also adapt other existing strategies, such us Gamma approximation, resampling techniques, etc. All of them are based on studying the distribution of statistics measuring the importance of the variables in the model. These strategies have been applied to the ASCA-genes analysis framework and more generally to dimension reduction techniques as PCA. The performance of the different strategies was evaluated using simulated data. The best performing methods were then applied on an experimental dataset containing the transcriptomic profiles of human embryonic stem cells cultured under different oxygen concentrations. The ability of the methods to extract relevant biological information from the data is discussed | es_ES |
dc.description.sponsorship | This work was partially funded by Spanish Ministry of Science and Innovation [grants BIO2008-05266-E and DPI2008-06880-C03-03/DPI] and by Universidad Politecnica de Valencia [UPV-PAID 05-09]. The English revision of this paper was funded by the Universidad Politecnica de Valencia. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemometrics and Intelligent Laboratory Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Gene expression | es_ES |
dc.subject | Multifactorial data | es_ES |
dc.subject | Principal component analysis | es_ES |
dc.subject | Variable selection | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Variable Selection for Multifactorial Genomic Data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chemolab.2011.10.012 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2008-06880-C03-03/ES/TECNICAS ESTADISTICAS MULTIVARIANTES PARA EL CONOCIMIENTO, MONITORIZACION Y OPTIMIZACION DE BIOPROCESOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2008-05266-E/ES/PATHOGENOMICS - METABOLOMICA E INTERACTOMICA DE LA RELACION HUESPED-PATOGENO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-09/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Tarazona Campos, S.; Prado-López, S.; Dopazo, J.; Ferrer Riquelme, AJ.; Conesa, A. (2012). Variable Selection for Multifactorial Genomic Data. Chemometrics and Intelligent Laboratory Systems. 110(1):113-122. https://doi.org/10.1016/j.chemolab.2011.10.012 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1016/j.chemolab.2011.10.012 | es_ES |
dc.description.upvformatpinicio | 113 | es_ES |
dc.description.upvformatpfin | 122 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 110 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 206209 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |