- -

Variable Selection for Multifactorial Genomic Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Variable Selection for Multifactorial Genomic Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tarazona Campos, Sonia es_ES
dc.contributor.author PRADO-LÓPEZ, Sonia es_ES
dc.contributor.author Dopazo, Joaquín es_ES
dc.contributor.author Ferrer Riquelme, Alberto José es_ES
dc.contributor.author CONESA, A. es_ES
dc.date.accessioned 2016-05-26T10:03:09Z
dc.date.available 2016-05-26T10:03:09Z
dc.date.issued 2012-01-15
dc.identifier.issn 0169-7439
dc.identifier.uri http://hdl.handle.net/10251/64780
dc.description.abstract [EN] Dimension reduction techniques are used to explore genomic data. Due to the large number of variables (genes) included in this kind of studies, variable selection methods are needed to identify the most responsive genes in order to get a better interpretation of the results or to conduct more specific experiments. These methods should be consistent with the amount of signal in the data. For this purpose, we introduce a novel selection strategy called minAS and also adapt other existing strategies, such us Gamma approximation, resampling techniques, etc. All of them are based on studying the distribution of statistics measuring the importance of the variables in the model. These strategies have been applied to the ASCA-genes analysis framework and more generally to dimension reduction techniques as PCA. The performance of the different strategies was evaluated using simulated data. The best performing methods were then applied on an experimental dataset containing the transcriptomic profiles of human embryonic stem cells cultured under different oxygen concentrations. The ability of the methods to extract relevant biological information from the data is discussed es_ES
dc.description.sponsorship This work was partially funded by Spanish Ministry of Science and Innovation [grants BIO2008-05266-E and DPI2008-06880-C03-03/DPI] and by Universidad Politecnica de Valencia [UPV-PAID 05-09]. The English revision of this paper was funded by the Universidad Politecnica de Valencia. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Gene expression es_ES
dc.subject Multifactorial data es_ES
dc.subject Principal component analysis es_ES
dc.subject Variable selection es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Variable Selection for Multifactorial Genomic Data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2011.10.012
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2008-06880-C03-03/ES/TECNICAS ESTADISTICAS MULTIVARIANTES PARA EL CONOCIMIENTO, MONITORIZACION Y OPTIMIZACION DE BIOPROCESOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2008-05266-E/ES/PATHOGENOMICS - METABOLOMICA E INTERACTOMICA DE LA RELACION HUESPED-PATOGENO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-09/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Tarazona Campos, S.; Prado-López, S.; Dopazo, J.; Ferrer Riquelme, AJ.; Conesa, A. (2012). Variable Selection for Multifactorial Genomic Data. Chemometrics and Intelligent Laboratory Systems. 110(1):113-122. https://doi.org/10.1016/j.chemolab.2011.10.012 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1016/j.chemolab.2011.10.012 es_ES
dc.description.upvformatpinicio 113 es_ES
dc.description.upvformatpfin 122 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 110 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 206209 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem