- -

Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Abellán Sáez, Gonzalo es_ES
dc.contributor.author Jorda Moret, Jose Luis es_ES
dc.contributor.author Atienzar Corvillo, Pedro Enrique es_ES
dc.contributor.author Varela , Maria es_ES
dc.contributor.author Jaafar, Miriam es_ES
dc.contributor.author Gomez-Herrero, Julio es_ES
dc.contributor.author Zamora, Felix es_ES
dc.contributor.author Ribera, Antonio es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Coronado, Eugenio es_ES
dc.date.accessioned 2016-05-26T10:32:52Z
dc.date.available 2016-05-26T10:32:52Z
dc.date.issued 2015
dc.identifier.issn 2041-6520
dc.identifier.uri http://hdl.handle.net/10251/64782
dc.description.abstract [EN] A hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl-LDH ferromagnetic layers intercalated with thermoresponsive 4-(4-anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In situ variable temperature XRD of these thin hybrids shows that the reversible change into the two tautomers is reflected in a shift of the position of the diffraction peaks at high temperatures towards lower interlayer spacing for the hydrazone form, as well as a broadening of the peaks reflecting lower crystallinity and ordering due to non-uniform spacing between the layers. These structural variations between room temperature (basal spacing (BS) = 25.91 angstrom) and 100 degrees C (BS = 25.05 angstrom) are also reflected in the magnetic properties of the layered double hydroxide (LDH) due to the variation of the magnetic coupling between the layers. Overall, our study constitutes one of the few examples showing fully reversible thermo-responsive breathing in a 2D hybrid material. In addition, the magnetic response of the hybrid can be modulated due to the thermotropism of the organic component that, by influencing the distance and in-plane correlation of the inorganic LDH, modulates the magnetism of the CoAl-LDH sheets in a certain range. es_ES
dc.description.sponsorship Financial support from the EU (SpinMol Advanced Grant ERC-2009-AdG-20090325 and ERC Starting Investigator Award STEMOX#239739), the Spanish Ministerio de Economia y Competitividad (Projects with FEDER cofinancing MAT2011-22785, MAT2012-38567-C02-01, MAT2013-46753-C2, CTQ-2011-26507, Consolider-Ingenio 2010-Multicat CSD2009-00050, and Severo Ochoa Program SEV-2012-0267), Generalitat Valenciana (PROMETEO and ISIC-Nano programs), and VLC/Campus Microcluster "Functional Nanomaterials and Nanodevices" is gratefully acknowledged. This work was sponsored by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (M.V.). G. A. thanks the EU for a Marie Curie Fellowship (FP7/2013-IEF-627386). P. A. thanks the Spanish MINECO for a Ramon y Cajal Fellowship. We also acknowledge J. A. Carrasco for his help with the experimental work, and J. M. Martinez and G. Agusti for magnetic measurements. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject METAL-ORGANIC FRAMEWORKS es_ES
dc.subject INTERCALATION COMPOUND es_ES
dc.subject COORDINATION POLYMERS es_ES
dc.subject THERMAL-EXPANSION es_ES
dc.subject PRUSSIAN BLUE es_ES
dc.subject NI-AL es_ES
dc.subject AZOBENZENE es_ES
dc.subject HYDROTALCITE es_ES
dc.subject PHOTOISOMERIZATION es_ES
dc.subject NANOPARTICLES es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c4sc03460k
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/2013-IEF-627386/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//ERC-2009-AdG-20090325/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-22785/ES/DEL MAGNETISMO MOLECULAR A LA ESPINTRONICA MOLECULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/239739/EU/Under the light of electrons/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38567-C02-01/ES/MATERIALES ZEOLITICOS COMO ESTRUCTURAS ANFITRIONAS DE NANOPARTICULAS. SINTESIS Y APLICACIONES NANOTECNOLOGICAS, CATALITICAS Y MEDIOAMBIENTALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46753-C2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-26507/ES/DISEÑO QUIMICO DE MATERIALES MAGNETICOS MULTIFUNCIONALES: DE LA COEXISTENCIA HACIA EL CONTROL DE LAS PROPIEDADES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Abellán Sáez, G.; Jorda Moret, JL.; Atienzar Corvillo, PE.; Varela, M.; Jaafar, M.; Gomez-Herrero, J.; Zamora, F.... (2015). Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule. Chemical Science. 6(3):1949-1958. https://doi.org/10.1039/c4sc03460k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c4sc03460k es_ES
dc.description.upvformatpinicio 1949 es_ES
dc.description.upvformatpfin 1958 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 305285 es_ES
dc.identifier.eissn 2041-6539
dc.identifier.pmcid PMC5495995 en_EN
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references P. Gómez-Romero and C.Sanchez, in Functional Hybrid Materials, ed. P. Gómez-Romero and C. Sanchez, Wiley-VCH Verlag GmbH & Co. KGaA, 2003, pp. 1–14 es_ES
dc.description.references Clemente-León, M., Coronado, E., Martí-Gastaldo, C., & Romero, F. M. (2011). Multifunctionality in hybrid magnetic materials based on bimetallic oxalate complexes. Chemical Society Reviews, 40(2), 473. doi:10.1039/c0cs00111b es_ES
dc.description.references Rogez, G., Massobrio, C., Rabu, P., & Drillon, M. (2011). Layered hydroxide hybrid nanostructures: a route to multifunctionality. Chemical Society Reviews, 40(2), 1031. doi:10.1039/c0cs00159g es_ES
dc.description.references Sanchez, C., Belleville, P., Popall, M., & Nicole, L. (2011). Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chemical Society Reviews, 40(2), 696. doi:10.1039/c0cs00136h es_ES
dc.description.references Coronado, E., Galán-Mascarós, J. R., Gómez-García, C. J., & Laukhin, V. (2000). Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature, 408(6811), 447-449. doi:10.1038/35044035 es_ES
dc.description.references Coronado, E., & Day, P. (2004). Magnetic Molecular Conductors. Chemical Reviews, 104(11), 5419-5448. doi:10.1021/cr030641n es_ES
dc.description.references Coronado, E., Martí-Gastaldo, C., Navarro-Moratalla, E., Ribera, A., Blundell, S. J., & Baker, P. J. (2010). Coexistence of superconductivity and magnetism by chemical design. Nature Chemistry, 2(12), 1031-1036. doi:10.1038/nchem.898 es_ES
dc.description.references Guo, Hu, J.-S., Liang, H.-P., Wan, L.-J., & Bai, C.-L. (2003). Highly Dispersed Metal Nanoparticles in Porous Anodic Alumina Films Prepared by a Breathing Process of Polyacrylamide Hydrogel. Chemistry of Materials, 15(22), 4332-4336. doi:10.1021/cm0343397 es_ES
dc.description.references Kitagawa, S., & Uemura, K. (2005). Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chemical Society Reviews, 34(2), 109. doi:10.1039/b313997m es_ES
dc.description.references Férey, G., & Serre, C. (2009). Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chemical Society Reviews, 38(5), 1380. doi:10.1039/b804302g es_ES
dc.description.references Dubbeldam, D., Walton, K. S., Ellis, D. E., & Snurr, R. Q. (2007). Exceptional Negative Thermal Expansion in Isoreticular Metal–Organic Frameworks. Angewandte Chemie International Edition, 46(24), 4496-4499. doi:10.1002/anie.200700218 es_ES
dc.description.references Henke, S., Schneemann, A., & Fischer, R. A. (2013). Massive Anisotropic Thermal Expansion and Thermo-Responsive Breathing in Metal-Organic Frameworks Modulated by Linker Functionalization. Advanced Functional Materials, 23(48), 5990-5996. doi:10.1002/adfm.201301256 es_ES
dc.description.references Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t es_ES
dc.description.references Coronado, E., Giménez-Marqués, M., Espallargas, G. M., & Brammer, L. (2012). Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nature Communications, 3(1). doi:10.1038/ncomms1827 es_ES
dc.description.references Coronado, E., & Mínguez Espallargas, G. (2013). Dynamic magnetic MOFs. Chem. Soc. Rev., 42(4), 1525-1539. doi:10.1039/c2cs35278h es_ES
dc.description.references Horike, S., Shimomura, S., & Kitagawa, S. (2009). Soft porous crystals. Nature Chemistry, 1(9), 695-704. doi:10.1038/nchem.444 es_ES
dc.description.references Stuart, M. A. C., Huck, W. T. S., Genzer, J., Müller, M., Ober, C., Stamm, M., … Minko, S. (2010). Emerging applications of stimuli-responsive polymer materials. Nature Materials, 9(2), 101-113. doi:10.1038/nmat2614 es_ES
dc.description.references Sakata, Y., Furukawa, S., Kondo, M., Hirai, K., Horike, N., Takashima, Y., … Kitagawa, S. (2013). Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing. Science, 339(6116), 193-196. doi:10.1126/science.1231451 es_ES
dc.description.references Ogawa, M., Ishii, T., Miyamoto, N., & Kuroda, K. (2001). Photocontrol of the Basal Spacing of Azobenzene–Magadiite Intercalation Compound. Advanced Materials, 13(14), 1107-1109. doi:10.1002/1521-4095(200107)13:14<1107::aid-adma1107>3.0.co;2-o es_ES
dc.description.references Iyi, N., Fujita, T., Yelamaggad, C. V., & Lopez Arbeloa, F. (2001). Intercalation of cationic azobenzene derivatives in a synthetic mica and their photoresponse. Applied Clay Science, 19(1-6), 47-58. doi:10.1016/s0169-1317(00)00037-5 es_ES
dc.description.references Yamamoto, T., Umemura, Y., Sato, O., & Einaga, Y. (2004). Photoswitchable Magnetic Films:  Prussian Blue Intercalated in Langmuir−Blodgett Films Consisting of an Amphiphilic Azobenzene and a Clay Mineral. Chemistry of Materials, 16(7), 1195-1201. doi:10.1021/cm035223d es_ES
dc.description.references Heinz, H., Vaia, R. A., Koerner, H., & Farmer, B. L. (2008). Photoisomerization of Azobenzene Grafted to Layered Silicates: Simulation and Experimental Challenges. Chemistry of Materials, 20(20), 6444-6456. doi:10.1021/cm801287d es_ES
dc.description.references Nabetani, Y., Takamura, H., Hayasaka, Y., Sasamoto, S., Tanamura, Y., Shimada, T., … Inoue, H. (2013). An artificial muscle model unit based on inorganic nanosheet sliding by photochemical reaction. Nanoscale, 5(8), 3182. doi:10.1039/c3nr34308a es_ES
dc.description.references Costantino, U., Coletti, N., Nocchetti, M., Aloisi, G. G., & Elisei, F. (1999). Anion Exchange of Methyl Orange into Zn−Al Synthetic Hydrotalcite and Photophysical Characterization of the Intercalates Obtained. Langmuir, 15(13), 4454-4460. doi:10.1021/la981672u es_ES
dc.description.references Latterini, L., Nocchetti, M., Aloisi, G. G., Costantino, U., & Elisei, F. (2007). Organized chromophores in layered inorganic matrices. Inorganica Chimica Acta, 360(3), 728-740. doi:10.1016/j.ica.2006.07.048 es_ES
dc.description.references Nabetani, Y., Takamura, H., Hayasaka, Y., Shimada, T., Takagi, S., Tachibana, H., … Inoue, H. (2011). A Photoactivated Artificial Muscle Model Unit: Reversible, Photoinduced Sliding of Nanosheets. Journal of the American Chemical Society, 133(43), 17130-17133. doi:10.1021/ja207278t es_ES
dc.description.references Leroux, F., & Taviot-Guého, C. (2005). Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. Journal of Materials Chemistry, 15(35-36), 3628. doi:10.1039/b505014f es_ES
dc.description.references S. M. Auerbach , K. A.Carrado and P. K.Dutta, Handbook of Layered Materials, CRC Press, 2004 es_ES
dc.description.references Yan, D., Lu, J., Wei, M., Evans, D. G., & Duan, X. (2011). Recent advances in photofunctional guest/layered double hydroxide host composite systems and their applications: experimental and theoretical perspectives. Journal of Materials Chemistry, 21(35), 13128. doi:10.1039/c1jm11594d es_ES
dc.description.references Abellán, G., Carrasco, J. A., & Coronado, E. (2013). Room Temperature Magnetism in Layered Double Hydroxides due to Magnetic Nanoparticles. Inorganic Chemistry, 52(14), 7828-7830. doi:10.1021/ic400883k es_ES
dc.description.references Abellán, G., Carrasco, J. A., Coronado, E., Romero, J., & Varela, M. (2014). Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical properties. J. Mater. Chem. C, 2(19), 3723-3731. doi:10.1039/c3tc32578d es_ES
dc.description.references Coronado, E., Galán-Mascarós, J. R., Martí-Gastaldo, C., Ribera, A., Palacios, E., Castro, M., & Burriel, R. (2008). Spontaneous Magnetization in Ni−Al and Ni−Fe Layered Double Hydroxides. Inorganic Chemistry, 47(19), 9103-9110. doi:10.1021/ic801123v es_ES
dc.description.references Abellán, G., Coronado, E., Martí-Gastaldo, C., Ribera, A., Jordá, J. L., & García, H. (2014). Photo-Switching in a Hybrid Material Made of Magnetic Layered Double Hydroxides Intercalated with Azobenzene Molecules. Advanced Materials, 26(24), 4156-4162. doi:10.1002/adma.201400713 es_ES
dc.description.references Cadars, S., Layrac, G., Gérardin, C., Deschamps, M., Yates, J. R., Tichit, D., & Massiot, D. (2011). Identification and Quantification of Defects in the Cation Ordering in Mg/Al Layered Double Hydroxides. Chemistry of Materials, 23(11), 2821-2831. doi:10.1021/cm200029q es_ES
dc.description.references Abellán, G., Coronado, E., Martí-Gastaldo, C., Waerenborgh, J., & Ribera, A. (2013). Interplay between Chemical Composition and Cation Ordering in the Magnetism of Ni/Fe Layered Double Hydroxides. Inorganic Chemistry, 52(17), 10147-10157. doi:10.1021/ic401576q es_ES
dc.description.references Wang, X., Lu, J., Shi, W., Li, F., Wei, M., Evans, D. G., & Duan, X. (2010). A Thermochromic Thin Film Based on Host−Guest Interactions in a Layered Double Hydroxide. Langmuir, 26(2), 1247-1253. doi:10.1021/la902403f es_ES
dc.description.references Xu, S.-M., Zhang, S.-T., Shi, W.-Y., Ning, F.-Y., Fu, Y., & Yan, H. (2014). Understanding the thermal motion of the luminescent dyes in the dye–surfactant cointercalated ZnAl-layered double hydroxides: a molecular dynamics study. RSC Adv., 4(88), 47472-47480. doi:10.1039/c4ra08299k es_ES
dc.description.references Ogawa, M., & Hiramine, M. (2014). Direct Correlation between Nanostructure and Particle Morphology during Intercalation. Crystal Growth & Design, 14(4), 1516-1519. doi:10.1021/cg401684u es_ES
dc.description.references Z. Sekkat and W.Knoll, Photoreactive Organic Thin Films, Academic Press, 2002 es_ES
dc.description.references Abellán, G., García, H., Gómez-García, C. J., & Ribera, A. (2011). Photochemical behavior in azobenzene having acidic groups. Preparation of magnetic photoresponsive gels. Journal of Photochemistry and Photobiology A: Chemistry, 217(1), 157-163. doi:10.1016/j.jphotochem.2010.10.003 es_ES
dc.description.references Bandara, H. M. D., & Burdette, S. C. (2012). Photoisomerization in different classes of azobenzene. Chem. Soc. Rev., 41(5), 1809-1825. doi:10.1039/c1cs15179g es_ES
dc.description.references X. Duan and D. G.Evans, Layered Double Hydroxides, Springer, 2006 es_ES
dc.description.references Ishihara, S., Iyi, N., Tsujimoto, Y., Tominaka, S., Matsushita, Y., Krishnan, V., … Ariga, K. (2013). Hydrogen-bond-driven ‘homogeneous intercalation’ for rapid, reversible, and ultra-precise actuation of layered clay nanosheets. Chemical Communications, 49(35), 3631. doi:10.1039/c3cc40398j es_ES
dc.description.references Demel, J., Hynek, J., Kovář, P., Dai, Y., Taviot-Guého, C., Demel, O., … Lang, K. (2014). Insight into the Structure of Layered Zinc Hydroxide Salts Intercalated with Dodecyl Sulfate Anions. The Journal of Physical Chemistry C, 118(46), 27131-27141. doi:10.1021/jp508499g es_ES
dc.description.references Fujita, W., & Awaga, K. (1997). Reversible Structural Transformation and Drastic Magnetic Change in a Copper Hydroxides Intercalation Compound. Journal of the American Chemical Society, 119(19), 4563-4564. doi:10.1021/ja970239o es_ES
dc.description.references Einaga, Y., Sato, O., Iyoda, T., Fujishima, A., & Hashimoto, K. (1999). Photofunctional Vesicles Containing Prussian Blue and Azobenzene. Journal of the American Chemical Society, 121(15), 3745-3750. doi:10.1021/ja982450l es_ES
dc.description.references Pérez-Ramírez, J., Ribera, A., Kapteijn, F., Coronado, E., & Gómez-García, C. J. (2002). Magnetic properties of Co–Al, Ni–Al, and Mg–Al hydrotalcites and the oxides formed upon their thermal decomposition. J. Mater. Chem., 12(8), 2370-2375. doi:10.1039/b110314h es_ES
dc.description.references Wang, C. J., Wu, Y. A., Jacobs, R. M. J., Warner, J. H., Williams, G. R., & O’Hare, D. (2011). Reverse Micelle Synthesis of Co−Al LDHs: Control of Particle Size and Magnetic Properties. Chemistry of Materials, 23(2), 171-180. doi:10.1021/cm1024603 es_ES
dc.description.references Chakraborty, C., Dana, K., & Malik, S. (2010). Intercalation of Perylenediimide Dye into LDH Clays: Enhancement of Photostability. The Journal of Physical Chemistry C, 115(5), 1996-2004. doi:10.1021/jp110486r es_ES
dc.description.references Han, J., Yan, D., Shi, W., Ma, J., Yan, H., Wei, M., … Duan, X. (2010). Layer-by-Layer Ultrathin Films of Azobenzene-Containing Polymer/Layered Double Hydroxides with Reversible Photoresponsive Behavior. The Journal of Physical Chemistry B, 114(17), 5678-5685. doi:10.1021/jp9114018 es_ES
dc.description.references Costantino, U., Marmottini, F., Nocchetti, M., & Vivani, R. (1998). New Synthetic Routes to Hydrotalcite-Like Compounds − Characterisation and Properties of the Obtained Materials. European Journal of Inorganic Chemistry, 1998(10), 1439-1446. doi:10.1002/(sici)1099-0682(199810)1998:10<1439::aid-ejic1439>3.0.co;2-1 es_ES
dc.description.references Iyi, N., Matsumoto, T., Kaneko, Y., & Kitamura, K. (2004). Deintercalation of Carbonate Ions from a Hydrotalcite-Like Compound:  Enhanced Decarbonation Using Acid−Salt Mixed Solution. Chemistry of Materials, 16(15), 2926-2932. doi:10.1021/cm049579g es_ES
dc.description.references Horcas, I., Fernández, R., Gómez-Rodríguez, J. M., Colchero, J., Gómez-Herrero, J., & Baro, A. M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78(1), 013705. doi:10.1063/1.2432410 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem