Mostrar el registro sencillo del ítem
dc.contributor.author | Jiang, Jiuxing | es_ES |
dc.contributor.author | Yun, Yifeng | es_ES |
dc.contributor.author | Zou, Xiaodong | es_ES |
dc.contributor.author | Jorda Moret, Jose Luis | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2016-05-26T10:55:55Z | |
dc.date.available | 2016-05-26T10:55:55Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 2041-6520 | |
dc.identifier.uri | http://hdl.handle.net/10251/64786 | |
dc.description.abstract | A multi-dimensional extra-large pore silicogermanate zeolite, named ITQ-54, has been synthesised by in situ decomposition of the N,N-dicyclohexylisoindolinium cation into the N-cyclohexylisoindolinium cation. Its structure was solved by 3D rotation electron diffraction (RED) from crystals of ca. 1 μm in size. The structure of ITQ-54 contains straight intersecting 20 × 14 × 12-ring channels along the three crystallographic axes and it is one of the few zeolites with extra-large channels in more than one direction. ITQ-54 has a framework density of 11.1 T atoms per 1000 Å3, which is one of the lowest among the known zeolites. ITQ-54 was obtained together with GeO2 as an impurity. A heavy liquid separation method was developed and successfully applied to remove this impurity from the zeolite. ITQ-54 is stable up to 600 °C and exhibits permanent porosity. The structure was further refined using powder X-ray diffraction (PXRD) data for both as-made and calcined samples. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Government (MAT2012-38567-C02-01, Consolider Ingenio 2010-Multicat CSD-2009-00050 and Severo Ochoa SEV-2012-0267), Generalitat Valenciana (Project Prometeo), the Swedish Research Council (VR), the Swedish Governmental Agency for Innovation Systems (VINNOVA) and the Knut & Alice Wallenberg Foundation through a grant for purchasing the TEMs and the project grant 3DEM-NATUR. Y. F. Yun thanks the China Scholarship Council (CSC). The authors acknowledge ESRF, Grenoble for the use of the beamline ID31 and the mail-in system of 11-BM at the Advanced Photon Source, Argonne National Laboratory, USA. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry: Chemical Science | es_ES |
dc.relation.ispartof | Chemical Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | STRUCTURE-DIRECTING AGENTS | es_ES |
dc.subject | MOLECULAR-SIEVE | es_ES |
dc.subject | ELECTRON CRYSTALLOGRAPHY | es_ES |
dc.subject | GALLOGERMANATE ZEOLITE | es_ES |
dc.subject | DIFFRACTION | es_ES |
dc.subject | GERMANIUM | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c4sc02577f | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38567-C02-01/ES/MATERIALES ZEOLITICOS COMO ESTRUCTURAS ANFITRIONAS DE NANOPARTICULAS. SINTESIS Y APLICACIONES NANOTECNOLOGICAS, CATALITICAS Y MEDIOAMBIENTALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Knut and Alice Wallenberg Foundation//3DEM-NATUR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Jiang, J.; Yun, Y.; Zou, X.; Jorda Moret, JL.; Corma Canós, A. (2015). ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chemical Science. 6(1):480-485. https://doi.org/10.1039/c4sc02577f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c4sc02577f | es_ES |
dc.description.upvformatpinicio | 480 | es_ES |
dc.description.upvformatpfin | 485 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 278487 | es_ES |
dc.identifier.eissn | 2041-6539 | |
dc.contributor.funder | Knut and Alice Wallenberg Foundation | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Swedish Research Council | es_ES |
dc.contributor.funder | Swedish Governmental Agency for Innovation Systems | es_ES |
dc.description.references | Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785 | es_ES |
dc.description.references | Atienzar, P., Díaz-Cabañas, M. J., Moliner, M., Peris, E., Corma, A., & García, H. (2007). Monomers That Form Conducting Polymers as Structure-Directing Agents: Synthesis of Microporous Molecular Sieves Encapsulating Poly-para-phenylenevinylene. Chemistry - A European Journal, 13(31), 8733-8738. doi:10.1002/chem.200700485 | es_ES |
dc.description.references | Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-x | es_ES |
dc.description.references | Wang, Z., Yu, J., & Xu, R. (2012). Needs and trends in rational synthesis of zeolitic materials. Chem. Soc. Rev., 41(5), 1729-1741. doi:10.1039/c1cs15150a | es_ES |
dc.description.references | Li, Y., Yu, J., & Xu, R. (2013). Criteria for Zeolite Frameworks Realizable for Target Synthesis. Angewandte Chemie International Edition, 52(6), 1673-1677. doi:10.1002/anie.201206340 | es_ES |
dc.description.references | Meng, X., & Xiao, F.-S. (2013). Green Routes for Synthesis of Zeolites. Chemical Reviews, 114(2), 1521-1543. doi:10.1021/cr4001513 | es_ES |
dc.description.references | C. Baerlocher and L.McCusker, 2014, Database of Zeolite Structures: http://www.iza-structure.org/databases/, (accessed August 20, 2014) | es_ES |
dc.description.references | Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016 | es_ES |
dc.description.references | Estermann, M., McCusker, L. B., Baerlocher, C., Merrouche, A., & Kessler, H. (1991). A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature, 352(6333), 320-323. doi:10.1038/352320a0 | es_ES |
dc.description.references | Su, J., Wang, Y., Lin, J., Liang, J., Sun, J., & Zou, X. (2013). A silicogermanate with 20-ring channels directed by a simple quaternary ammonium cation. Dalton Trans., 42(5), 1360-1363. doi:10.1039/c2dt32231e | es_ES |
dc.description.references | Wei, Y., Tian, Z., Gies, H., Xu, R., Ma, H., Pei, R., … Lin, L. (2010). Ionothermal Synthesis of an Aluminophosphate Molecular Sieve with 20-Ring Pore Openings. Angewandte Chemie International Edition, 49(31), 5367-5370. doi:10.1002/anie.201000320 | es_ES |
dc.description.references | Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957 | es_ES |
dc.description.references | Corma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107 | es_ES |
dc.description.references | Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652 | es_ES |
dc.description.references | McCusker, L., & Baerlocher, C. (2013). Electron crystallography as a complement to X-ray powder diffraction techniques. Zeitschrift für Kristallographie - Crystalline Materials, 228(1), 1-10. doi:10.1524/zkri.2013.1558 | es_ES |
dc.description.references | Willhammar, T., Yun, Y., & Zou, X. (2013). Structural Determination of Ordered Porous Solids by Electron Crystallography. Advanced Functional Materials, 24(2), 182-199. doi:10.1002/adfm.201301949 | es_ES |
dc.description.references | Wagner, P., Terasaki, O., Ritsch, S., Nery, J. G., Zones, S. I., Davis, M. E., & Hiraga, K. (1999). Electron Diffraction Structure Solution of a Nanocrystalline Zeolite at Atomic Resolution. The Journal of Physical Chemistry B, 103(39), 8245-8250. doi:10.1021/jp991389j | es_ES |
dc.description.references | Kolb, U., Gorelik, T., Kübel, C., Otten, M. T., & Hubert, D. (2007). Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy, 107(6-7), 507-513. doi:10.1016/j.ultramic.2006.10.007 | es_ES |
dc.description.references | Zhang, D., Oleynikov, P., Hovmöller, S., & Zou, X. (2010). Collecting 3D electron diffraction data by the rotation method. Zeitschrift für Kristallographie, 225(2-3). doi:10.1524/zkri.2010.1202 | es_ES |
dc.description.references | X. Zou , S.Hovmoller and P.Oleynikov, Electron Crystallography: Electron Microscopy and Electron Diffraction, Oxford University Press, 2011 | es_ES |
dc.description.references | Wan, W., Sun, J., Su, J., Hovmöller, S., & Zou, X. (2013). Three-dimensional rotation electron diffraction: softwareREDfor automated data collection and data processing. Journal of Applied Crystallography, 46(6), 1863-1873. doi:10.1107/s0021889813027714 | es_ES |
dc.description.references | Martinez-Franco, R., Moliner, M., Yun, Y., Sun, J., Wan, W., Zou, X., & Corma, A. (2013). Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proceedings of the National Academy of Sciences, 110(10), 3749-3754. doi:10.1073/pnas.1220733110 | es_ES |
dc.description.references | Hua, W., Chen, H., Yu, Z.-B., Zou, X., Lin, J., & Sun, J. (2014). A Germanosilicate Structure with 11×11×12-Ring Channels Solved by Electron Crystallography. Angewandte Chemie International Edition, 53(23), 5868-5871. doi:10.1002/anie.201309766 | es_ES |
dc.description.references | Conradsson, T., Dadachov, M. ., & Zou, X. . (2000). Synthesis and structure of (Me3N)6[Ge32O64](H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Microporous and Mesoporous Materials, 41(1-3), 183-191. doi:10.1016/s1387-1811(00)00288-2 | es_ES |
dc.description.references | Liu, Z., Song, X., Li, J., Li, Y., Yu, J., & Xu, R. (2012). |(C4NH12)4|[M4Al12P16O64] (M = Co, Zn): New Heteroatom-Containing Aluminophosphate Molecular Sieves with Two Intersecting 8-Ring Channels. Inorganic Chemistry, 51(3), 1969-1974. doi:10.1021/ic2022903 | es_ES |
dc.description.references | Tang, L., Shi, L., Bonneau, C., Sun, J., Yue, H., Ojuva, A., … Zou, X. (2008). A zeolite family with chiral and achiral structures built from the same building layer. Nature Materials, 7(5), 381-385. doi:10.1038/nmat2169 | es_ES |
dc.description.references | R. A. Young , The Rietveld Method, Oxford University Press, 1995 | es_ES |
dc.description.references | Zheng, N. (2002). Microporous and Photoluminescent Chalcogenide Zeolite Analogs. Science, 298(5602), 2366-2369. doi:10.1126/science.1078663 | es_ES |
dc.description.references | Xu, Y., Li, Y., Han, Y., Song, X., & Yu, J. (2013). A Gallogermanate Zeolite with Eleven-Membered-Ring Channels. Angewandte Chemie International Edition, 52(21), 5501-5503. doi:10.1002/anie.201300846 | es_ES |
dc.description.references | Han, Y., Li, Y., Yu, J., & Xu, R. (2011). A Gallogermanate Zeolite Constructed Exclusively by Three-Ring Building Units. Angewandte Chemie International Edition, 50(13), 3003-3005. doi:10.1002/anie.201006500 | es_ES |
dc.description.references | Gao, F., Jaber, M., Bozhilov, K., Vicente, A., Fernandez, C., & Valtchev, V. (2009). Framework Stabilization of Ge-Rich Zeolites via Postsynthesis Alumination. Journal of the American Chemical Society, 131(45), 16580-16586. doi:10.1021/ja904458y | es_ES |
dc.description.references | Xu, H., Jiang, J., Yang, B., Zhang, L., He, M., & Wu, P. (2013). Post-Synthesis Treatment gives Highly Stable Siliceous Zeolites through the Isomorphous Substitution of Silicon for Germanium in Germanosilicates. Angewandte Chemie International Edition, 53(5), 1355-1359. doi:10.1002/anie.201306527 | es_ES |
dc.description.references | Burel, L., Kasian, N., & Tuel, A. (2013). Quasi All-Silica Zeolite Obtained by Isomorphous Degermanation of an As-Made Germanium-Containing Precursor. Angewandte Chemie International Edition, 53(5), 1360-1363. doi:10.1002/anie.201306744 | es_ES |
dc.description.references | Blatov, V. A., Shevchenko, A. P., & Proserpio, D. M. (2014). Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Crystal Growth & Design, 14(7), 3576-3586. doi:10.1021/cg500498k | es_ES |
dc.description.references | Blatov, V. A., Shevchenko, A. P., & Serezhkin, V. N. (2000). TOPOS3.2: a new version of the program package for multipurpose crystal-chemical analysis. Journal of Applied Crystallography, 33(4), 1193-1193. doi:10.1107/s0021889800007202 | es_ES |
dc.description.references | Delgado-Friedrichs, O. (2003). Data structures and algorithms for tilings I. Theoretical Computer Science, 303(2-3), 431-445. doi:10.1016/s0304-3975(02)00500-5 | es_ES |