- -

Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz Dominguez, Eva es_ES
dc.contributor.author García Manrique, Juan Antonio es_ES
dc.date.accessioned 2016-05-26T11:34:44Z
dc.date.available 2016-05-26T11:34:44Z
dc.date.issued 2015
dc.identifier.issn 1687-9422
dc.identifier.uri http://hdl.handle.net/10251/64791
dc.description.abstract In the context of sustainable development, considerable interest is being shown in the use of natural fibres like as reinforcement in polymer composites and in the development of resins from renewable resources. This paper focus on eco-friendly and sustainable green composites manufacturing using Resin Transfer Moulding (RTM) process. Flax fibre reinforced bioepoxy composites at different weight fractions (40 and 55wt%) were prepared in order to study the effect of water absorption on their mechanical properties. Water absorption test was carried out by immersion specimens in water bath at room temperature for a time duration. The process of water absorption of these composites was found to approach Fickian diffusion behavior. Diffusion coefficients and maximum water uptake values were evaluated, the results showed that both increased with an increase in fibre content. Tensile and flexural properties of water immersed specimens were evaluated and compared to dry composite specimens. The results suggest that swelling of flax fibres due to water absorption can have positive effects on mechanical properties of the composite material. The results of this study showed that RTM process could be used to manufacture natural fibre reinforced composites with good mechanical properties even for potential applications in a humid environment es_ES
dc.description.sponsorship This research is supported by the Spanish Ministerio de Ciencia e Innovacion, Projects PAID-05-11, DPI 2010-20333, and DPI 2013-44903-R-AR. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof International Journal of Polymer Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Green Composites es_ES
dc.subject Natural Fibres es_ES
dc.subject Flax Fibre es_ES
dc.subject Bioepoxy resin es_ES
dc.subject Water Absorption es_ES
dc.subject Mechanical Properties es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2015/390275
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20333/ES/DESARROLLO SOSTENIBLE Y MODELADO DE COMPOSITES TERMOPLASTICOS (GREEN COMPOSITE)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-44903-R/ES/FABRICACION DE COMPOSITES DE ALTAS PRESTACIONES SIN AUTOCLAVE (OOA)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-11/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Muñoz Dominguez, E.; García Manrique, JA. (2015). Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. International Journal of Polymer Science. 2015:1-10. https://doi.org/10.1155/2015/390275 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2015/390275 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2015 es_ES
dc.relation.senia 293556 es_ES
dc.identifier.eissn 1687-9430
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Netravali, A. N., Huang, X., & Mizuta, K. (2007). Advanced «green» composites. Advanced Composite Materials, 16(4), 269-282. doi:10.1163/156855107782325230 es_ES
dc.description.references La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017 es_ES
dc.description.references Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259-1264. doi:10.1016/s0266-3538(03)00096-4 es_ES
dc.description.references Summerscales, J., Dissanayake, N. P. J., Virk, A. S., & Hall, W. (2010). A review of bast fibres and their composites. Part 1 – Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 41(10), 1329-1335. doi:10.1016/j.compositesa.2010.06.001 es_ES
dc.description.references Summerscales, J., Dissanayake, N., Virk, A., & Hall, W. (2010). A review of bast fibres and their composites. Part 2 – Composites. Composites Part A: Applied Science and Manufacturing, 41(10), 1336-1344. doi:10.1016/j.compositesa.2010.05.020 es_ES
dc.description.references Karus, M., & Kaup, M. (2002). Natural Fibres in the European Automotive Industry. Journal of Industrial Hemp, 7(1), 119-131. doi:10.1300/j237v07n01_10 es_ES
dc.description.references Puglia, D., Biagiotti, J., & Kenny, J. M. (2005). A Review on Natural Fibre-Based Composites—Part II. Journal of Natural Fibers, 1(3), 23-65. doi:10.1300/j395v01n03_03 es_ES
dc.description.references Uddin, N., & Kalyankar, R. R. (2011). Manufacturing and Structural Feasibility of Natural Fiber Reinforced Polymeric Structural Insulated Panels for Panelized Construction. International Journal of Polymer Science, 2011, 1-7. doi:10.1155/2011/963549 es_ES
dc.description.references Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806-819. doi:10.1016/j.compositesa.2010.03.005 es_ES
dc.description.references Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883-2892. doi:10.1016/j.compositesb.2012.04.053 es_ES
dc.description.references DHAKAL, H., ZHANG, Z., & RICHARDSON, M. (2007). Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology, 67(7-8), 1674-1683. doi:10.1016/j.compscitech.2006.06.019 es_ES
dc.description.references Alamri, H., & Low, I. M. (2012). Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer Testing, 31(5), 620-628. doi:10.1016/j.polymertesting.2012.04.002 es_ES
dc.description.references KARMAKER, A. C. (1997). Journal of Materials Science Letters, 16(6), 462-464. doi:10.1023/a:1018508209022 es_ES
dc.description.references Espert, A., Vilaplana, F., & Karlsson, S. (2004). Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Composites Part A: Applied Science and Manufacturing, 35(11), 1267-1276. doi:10.1016/j.compositesa.2004.04.004 es_ES
dc.description.references Ahmad, S. H., Rasid, R., Bonnia, N. N., Zainol, I., Mamun, A. A., Bledzki, A. K., & Beg, M. D. H. (2010). Polyester-Kenaf Composites: Effects of Alkali Fiber Treatment and Toughening of Matrix Using Liquid Natural Rubber. Journal of Composite Materials, 45(2), 203-217. doi:10.1177/0021998310373514 es_ES
dc.description.references Shen, C.-H., & Springer, G. S. (1976). Moisture Absorption and Desorption of Composite Materials. Journal of Composite Materials, 10(1), 2-20. doi:10.1177/002199837601000101 es_ES
dc.description.references Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM, 58(11), 80-86. doi:10.1007/s11837-006-0234-2 es_ES
dc.description.references Francucci, G., & Rodriguez, E. (2014). Processing of plant fiber composites by liquid molding techniques: An overview. Polymer Composites, 37(3), 718-733. doi:10.1002/pc.23229 es_ES
dc.description.references WANG, W., SAIN, M., & COOPER, P. (2006). Study of moisture absorption in natural fiber plastic composites. Composites Science and Technology, 66(3-4), 379-386. doi:10.1016/j.compscitech.2005.07.027 es_ES
dc.description.references Charlet, K., Jernot, J. P., Gomina, M., Bréard, J., Morvan, C., & Baley, C. (2009). Influence of an Agatha flax fibre location in a stem on its mechanical, chemical and morphological properties. Composites Science and Technology, 69(9), 1399-1403. doi:10.1016/j.compscitech.2008.09.002 es_ES
dc.description.references Bismarck, A., Aranberri-Askargorta, I., Springer, J., Lampke, T., Wielage, B., Stamboulis, A., … Limbach, H.-H. (2002). Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior. Polymer Composites, 23(5), 872-894. doi:10.1002/pc.10485 es_ES
dc.description.references Karmaker, A. C., Hoffmann, A., & Hinrichsen, G. (1994). Influence of water uptake on the mechanical properties of jute fiber-reinforced polypropylene. Journal of Applied Polymer Science, 54(12), 1803-1807. doi:10.1002/app.1994.070541203 es_ES
dc.description.references Nevin, C. S., & Moser, B. F. (1963). Vinyl oil monomers. I. Vicinal methacryloxy-hydroxy soy oils. Journal of Applied Polymer Science, 7(5), 1853-1866. doi:10.1002/app.1963.070070523 es_ES
dc.description.references Miyagawa, H., Mohanty, A. K., Misra, M., & Drzal, L. T. (2004). Thermo-Physical and Impact Properties of Epoxy Containing Epoxidized Linseed Oil, 2. Macromolecular Materials and Engineering, 289(7), 636-641. doi:10.1002/mame.200400003 es_ES
dc.description.references Jin, F.-L., & Park, S.-J. (2008). Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils. Polymer International, 57(4), 577-583. doi:10.1002/pi.2280 es_ES
dc.description.references Zhu, J., Chandrashekhara, K., Flanigan, V., & Kapila, S. (2004). Curing and mechanical characterization of a soy-based epoxy resin system. Journal of Applied Polymer Science, 91(6), 3513-3518. doi:10.1002/app.13571 es_ES
dc.description.references Singh, B., Gupta, M., & Verma, A. (2000). The durability of jute fibre-reinforced phenolic composites. Composites Science and Technology, 60(4), 581-589. doi:10.1016/s0266-3538(99)00172-4 es_ES
dc.description.references Acha, B. A., Marcovich, N. E., & Reboredo, M. M. (2005). Physical and mechanical characterization of jute fabric composites. Journal of Applied Polymer Science, 98(2), 639-650. doi:10.1002/app.22083 es_ES
dc.description.references Biagiotti, J., Puglia, D., & Kenny, J. M. (2004). A Review on Natural Fibre-Based Composites-Part I. Journal of Natural Fibers, 1(2), 37-68. doi:10.1300/j395v01n02_04 es_ES
dc.description.references Joseph, P. ., Rabello, M. S., Mattoso, L. H. ., Joseph, K., & Thomas, S. (2002). Environmental effects on the degradation behaviour of sisal fibre reinforced polypropylene composites. Composites Science and Technology, 62(10-11), 1357-1372. doi:10.1016/s0266-3538(02)00080-5 es_ES
dc.description.references Stamboulis, A., Baillie, C. A., & Peijs, T. (2001). Effects of environmental conditions on mechanical and physical properties of flax fibers. Composites Part A: Applied Science and Manufacturing, 32(8), 1105-1115. doi:10.1016/s1359-835x(01)00032-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem