Mostrar el registro sencillo del ítem
dc.contributor.author | Prats-Montalbán, José Manuel | es_ES |
dc.contributor.author | Cocchi, Marina | es_ES |
dc.contributor.author | Ferrer Riquelme, Alberto José | es_ES |
dc.date.accessioned | 2016-05-26T11:53:41Z | |
dc.date.available | 2016-05-26T11:53:41Z | |
dc.date.issued | 2015-06 | |
dc.identifier.issn | 0886-9383 | |
dc.identifier.uri | http://hdl.handle.net/10251/64793 | |
dc.description | Additional information may be found in the online version of this article at the publisher’s web site | es_ES |
dc.description.abstract | [EN] When trying to analyze spatial relationships in image analysis, wavelets appear as one of the state-of-the-art tools. However, image analysis is a problem-dependent issue, and different applications might require different wavelets in order to gather the main sources of variation in the acquired images with respect to the specific task to be performed. This paper provides a methodology based on N-way modeling for properly selecting the best wavelet choice to use or at least to provide a range of possible wavelet choices (in terms of families, filters, and decomposition levels), for each image and problem at hand. The methodology has been applied on two different data sets with exploratory and monitoring objectives. Copyright © 2015 John Wiley & Sons, Ltd. | es_ES |
dc.description.sponsorship | This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Journal of Chemometrics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Wavelets | es_ES |
dc.subject | Tucker3 | es_ES |
dc.subject | Multivariate Image Analysis | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | N-way modeling for wavelet filter determination in Multivariate Image Analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cem.2717 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Prats-Montalbán, JM.; Cocchi, M.; Ferrer Riquelme, AJ. (2015). N-way modeling for wavelet filter determination in Multivariate Image Analysis. Journal of Chemometrics. 29:379-388. https://doi.org/10.1002/cem.2717 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1002/cem.2717 | es_ES |
dc.description.upvformatpinicio | 379 | es_ES |
dc.description.upvformatpfin | 388 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.relation.senia | 284742 | es_ES |
dc.identifier.eissn | 1099-128X | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Prats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. doi:10.1016/j.chemolab.2011.03.002 | es_ES |
dc.description.references | Liu, J. J., & MacGregor, J. F. (2007). On the extraction of spectral and spatial information from images. Chemometrics and Intelligent Laboratory Systems, 85(1), 119-130. doi:10.1016/j.chemolab.2006.05.011 | es_ES |
dc.description.references | Liu, J. J., & MacGregor, J. F. (2006). Estimation and monitoring of product aesthetics: application to manufacturing of «engineered stone» countertops. Machine Vision and Applications, 16(6), 374-383. doi:10.1007/s00138-005-0009-8 | es_ES |
dc.description.references | Reis, M. S., & Bauer, A. (2009). Wavelet texture analysis of on-line acquired images for paper formation assessment and monitoring. Chemometrics and Intelligent Laboratory Systems, 95(2), 129-137. doi:10.1016/j.chemolab.2008.09.007 | es_ES |
dc.description.references | Van de Wouwer G Wavelets for multiscale texture analysis 1998 | es_ES |
dc.description.references | Rackov, D. M., Popovic, M. V., & Mojsilovic, A. (2000). On the selection of an optimal wavelet basis for texture characterization. IEEE Transactions on Image Processing, 9(12), 2043-2050. doi:10.1109/83.887972 | es_ES |
dc.description.references | Villasenor, J. D., Belzer, B., & Liao, J. (1995). Wavelet filter evaluation for image compression. IEEE Transactions on Image Processing, 4(8), 1053-1060. doi:10.1109/83.403412 | es_ES |
dc.description.references | Svensson, O., Abrahamsson, K., Engelbrektsson, J., Nicholas, M., Wikström, H., & Josefson, M. (2006). An evaluation of 2D-wavelet filters for estimation of differences in textures of pharmaceutical tablets. Chemometrics and Intelligent Laboratory Systems, 84(1-2), 3-8. doi:10.1016/j.chemolab.2006.04.019 | es_ES |
dc.description.references | Engelbrektsson, J., Abrahamsson, K., Breitholtz, J., Nicholas, M., Svensson, O., Wikström, H., & Josefson, M. (2010). The impact of Mexican hat and dual-tree complex wavelet transforms on multivariate evaluation of image texture properties. Journal of Chemometrics, 24(7-8), 454-463. doi:10.1002/cem.1285 | es_ES |
dc.description.references | Liu, J. J., & MacGregor, J. F. (2005). Modeling and Optimization of Product Appearance: Application to Injection-Molded Plastic Panels. Industrial & Engineering Chemistry Research, 44(13), 4687-4696. doi:10.1021/ie0492101 | es_ES |
dc.description.references | Mallet, Y., Coomans, D., Kautsky, J., & De Vel, O. (1997). Classification using adaptive wavelets for feature extraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(10), 1058-1066. doi:10.1109/34.625106 | es_ES |
dc.description.references | Henrion, R. (1994). N-way principal component analysis theory, algorithms and applications. Chemometrics and Intelligent Laboratory Systems, 25(1), 1-23. doi:10.1016/0169-7439(93)e0086-j | es_ES |
dc.description.references | Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674-693. doi:10.1109/34.192463 | es_ES |
dc.description.references | Pesquet, J.-C., Krim, H., & Carfantan, H. (1996). Time-invariant orthonormal wavelet representations. IEEE Transactions on Signal Processing, 44(8), 1964-1970. doi:10.1109/78.533717 | es_ES |
dc.description.references | Coifman, R. R., & Donoho, D. L. (1995). Translation-Invariant De-Noising. Lecture Notes in Statistics, 125-150. doi:10.1007/978-1-4612-2544-7_9 | es_ES |
dc.description.references | Juneau, P.-M., Garnier, A., & Duchesne, C. (2015). The undecimated wavelet transform–multivariate image analysis (UWT-MIA) for simultaneous extraction of spectral and spatial information. Chemometrics and Intelligent Laboratory Systems, 142, 304-318. doi:10.1016/j.chemolab.2014.09.007 | es_ES |
dc.description.references | Daubechies I Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics 1992 | es_ES |
dc.description.references | Jawerth, B., & Sweldens, W. (1994). An Overview of Wavelet Based Multiresolution Analyses. SIAM Review, 36(3), 377-412. doi:10.1137/1036095 | es_ES |
dc.description.references | Gurden, S. P., Westerhuis, J. A., Bro, R., & Smilde, A. K. (2001). A comparison of multiway regression and scaling methods. Chemometrics and Intelligent Laboratory Systems, 59(1-2), 121-136. doi:10.1016/s0169-7439(01)00168-x | es_ES |
dc.description.references | Westerhuis, J. A., Kourti, T., & MacGregor, J. F. (1999). Comparing alternative approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics, 13(3-4), 397-413. doi:10.1002/(sici)1099-128x(199905/08)13:3/4<397::aid-cem559>3.0.co;2-i | es_ES |
dc.description.references | Bro, R., & Smilde, A. K. (2003). Centering and scaling in component analysis. Journal of Chemometrics, 17(1), 16-33. doi:10.1002/cem.773 | es_ES |
dc.description.references | Henrion, R., & Andersson, C. A. (1999). A new criterion for simple-structure transformations of core arrays in N-way principal components analysis. Chemometrics and Intelligent Laboratory Systems, 47(2), 189-204. doi:10.1016/s0169-7439(98)00209-3 | es_ES |
dc.description.references | Henrion, R. (1993). Body diagonalization of core matrices in three-way principal components analysis: Theoretical bounds and simulation. Journal of Chemometrics, 7(6), 477-494. doi:10.1002/cem.1180070604 | es_ES |
dc.description.references | Li Vigni M Prats-Montalbán JM Ferrer-Riquelme A Cocchi M Coupling 2D-wavelet decomposition and multivariate image analysis (2D WT-MIA) | es_ES |
dc.description.references | Jackson, J. E. (1991). A Use’s Guide to Principal Components. Wiley Series in Probability and Statistics. doi:10.1002/0471725331 | es_ES |
dc.description.references | García-Díaz, J. C., & Prats-Montalbán, J. M. (2005). Characterization of soils irrigated with untreated urban wastewater using multiway techniques. Chemometrics and Intelligent Laboratory Systems, 76(1), 15-24. doi:10.1016/j.chemolab.2004.08.005 | es_ES |
dc.description.references | Leardi, R., Armanino, C., Lanteri, S., & Alberotanza, L. (2000). Three-mode principal component analysis of monitoring data from Venice lagoon. Journal of Chemometrics, 14(3), 187-195. doi:10.1002/1099-128x(200005/06)14:3<187::aid-cem593>3.0.co;2-0 | es_ES |
dc.description.references | Prats-Montalbán, J. M., & Ferrer, A. (2007). Integration of colour and textural information in multivariate image analysis: defect detection and classification issues. Journal of Chemometrics, 21(1-2), 10-23. doi:10.1002/cem.1026 | es_ES |
dc.description.references | Smilde, A., Bro, R., & Geladi, P. (2004). Multi-Way Analysis with Applications in the Chemical Sciences. doi:10.1002/0470012110 | es_ES |