- -

Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects

Mostrar el registro completo del ítem

Camacho Páez, J.; Ferrer Riquelme, AJ. (2012). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects. Journal of Chemometrics. 26(1):361-373. https://doi.org/10.1002/cem.2440

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64795

Ficheros en el ítem

Metadatos del ítem

Título: Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: theoretical aspects
Autor: Camacho Páez, José Ferrer Riquelme, Alberto José
Entidad UPV: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Cross-validation has become one of the principal methods to adjust the meta-parameters in predictive models. Extensions of the cross-validation idea have been proposed to select the number of components in principal ...[+]
Palabras clave: Principal component analysis , Number of components , Cross-validation , Missing data , Compression
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Chemometrics. (issn: 0886-9383 )
DOI: 10.1002/cem.2440
Editorial:
Wiley
Versión del editor: https://dx.doi.org/10.1002/cem.2440
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/
Agradecimientos:
Research in this area is partially supported by the Spanish Ministry of Economy and Competitiveness and FEDER funds from the European Union through grant DPI2011-28112-C04-02. Jose Camacho was funded by the Juan de la ...[+]
Tipo: Artículo

References

Wold, S. (1978). Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics, 20(4), 397-405. doi:10.1080/00401706.1978.10489693

Eastment, H. T., & Krzanowski, W. J. (1982). Cross-Validatory Choice of the Number of Components From a Principal Component Analysis. Technometrics, 24(1), 73-77. doi:10.1080/00401706.1982.10487712

Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888 [+]
Wold, S. (1978). Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models. Technometrics, 20(4), 397-405. doi:10.1080/00401706.1978.10489693

Eastment, H. T., & Krzanowski, W. J. (1982). Cross-Validatory Choice of the Number of Components From a Principal Component Analysis. Technometrics, 24(1), 73-77. doi:10.1080/00401706.1982.10487712

Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch Processes. Technometrics, 37(1), 41-59. doi:10.1080/00401706.1995.10485888

Bro, R., Kjeldahl, K., Smilde, A. K., & Kiers, H. A. L. (2008). Cross-validation of component models: A critical look at current methods. Analytical and Bioanalytical Chemistry, 390(5), 1241-1251. doi:10.1007/s00216-007-1790-1

Wise BM Gallagher NB Bro R Shaver JM Windig W Koch RS PLSToolbox 3.5 for use with Matlab 2005

Nelson, P. R. C., Taylor, P. A., & MacGregor, J. F. (1996). Missing data methods in PCA and PLS: Score calculations with incomplete observations. Chemometrics and Intelligent Laboratory Systems, 35(1), 45-65. doi:10.1016/s0169-7439(96)00007-x

Arteaga, F., & Ferrer, A. (2002). Dealing with missing data in MSPC: several methods, different interpretations, some examples. Journal of Chemometrics, 16(8-10), 408-418. doi:10.1002/cem.750

Arteaga, F., & Ferrer, A. (2005). Framework for regression-based missing data imputation methods in on-line MSPC. Journal of Chemometrics, 19(8), 439-447. doi:10.1002/cem.946

Zhang, P. (1993). Model Selection Via Multifold Cross Validation. The Annals of Statistics, 21(1), 299-313. doi:10.1214/aos/1176349027

Louwerse, D. J., Smilde, A. K., & Kiers, H. A. L. (1999). Cross-validation of multiway component models. Journal of Chemometrics, 13(5), 491-510. doi:10.1002/(sici)1099-128x(199909/10)13:5<491::aid-cem537>3.0.co;2-2

Lei, F., Rotbøll, M., & Jørgensen, S. B. (2001). A biochemically structured model for Saccharomyces cerevisiae. Journal of Biotechnology, 88(3), 205-221. doi:10.1016/s0168-1656(01)00269-3

López, F., Miguel Valiente, J., Manuel Prats, J., & Ferrer, A. (2008). Performance evaluation of soft color texture descriptors for surface grading using experimental design and logistic regression. Pattern Recognition, 41(5), 1744-1755. doi:10.1016/j.patcog.2007.09.011

Camacho, J., Picó, J., & Ferrer, A. (2010). Data understanding with PCA: Structural and Variance Information plots. Chemometrics and Intelligent Laboratory Systems, 100(1), 48-56. doi:10.1016/j.chemolab.2009.10.005

Mercer, A. M., & Mercer, P. R. (2000). Cauchy’s interlace theorem and lower bounds for the spectral radius. International Journal of Mathematics and Mathematical Sciences, 23(8), 563-566. doi:10.1155/s016117120000257x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem