- -

A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Campos Frances, Marcelino es_ES
dc.contributor.author Llorens, Carlos es_ES
dc.contributor.author Sempere Luna, José María es_ES
dc.contributor.author Futami, Ricardo es_ES
dc.contributor.author Rodríguez, Irene es_ES
dc.contributor.author Carrasco, Purificación es_ES
dc.contributor.author Capilla, Rafael es_ES
dc.contributor.author Latorre, Amparo es_ES
dc.contributor.author Coque, Teresa M. es_ES
dc.contributor.author Moya, Andrés es_ES
dc.contributor.author Baquero, Fernando es_ES
dc.date.accessioned 2016-05-27T08:23:02Z
dc.date.available 2016-05-27T08:23:02Z
dc.date.issued 2015
dc.identifier.issn 1745-6150
dc.identifier.uri http://hdl.handle.net/10251/64840
dc.description.abstract In this article, we introduce ARES (Antibiotic Resistance Evolution Simulator) a software device that simulates P-system model scenarios with five types of nested computing membranes oriented to emulate a hierarchy of eco-biological compartments, i.e. a) peripheral ecosystem; b) local environment; c) reservoir of supplies; d) animal host; and e) host's associated bacterial organisms (microbiome). Computational objects emulating molecular entities such as plasmids, antibiotic resistance genes, antimicrobials, and/or other substances can be introduced into this framework and may interact and evolve together with the membranes, according to a set of pre-established rules and specifications. ARES has been implemented as an online server and offers additional tools for storage and model editing and downstream analysis es_ES
dc.description.sponsorship This work has also been supported by grants BFU2012-39816-C02-01 (co-financed by FEDER funds and the Ministry of Economy and Competitiveness, Spain) to AL and Prometeo/2009/092 (Ministry of Education, Government of Valencia, Spain) and Explora Ciencia y Explora Tecnologia/SAF2013-49788-EXP (Spanish Ministry of Economy and Competitiveness) to AM. IRF is recipient of a "Sara Borrell" postdoctoral fellowship (Ref. CD12/00492) from the Ministry of Economy and Competitiveness (Spain). We are also grateful to the Spanish Network for the Study of Plasmids and Extrachromosomal Elements (REDEEX) for encouraging and funding cooperation among Spanish microbiologists working on the biology of mobile genetic elements (Spanish Ministry of Science and Innovation, reference number BFU2011-14145-E). en_EN
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation European Commission/EvoTAR-282004 es_ES
dc.relation.ispartof Biology Direct es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Membrane computing es_ES
dc.subject P-system es_ES
dc.subject Antibiotic resistance es_ES
dc.subject Essential nesting es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13062-015-0070-9
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/282004/EU/Evolution and Transfer of Antibiotic Resistance/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//PI10%2F02588/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI12%2F01581/ES/Nodos de Alto Riesgo en Redes de Intercambio Génico de Poblaciones Bacterianas resistentes a antibióticos: Bases Teóricas y Experimentales de Futuras Estrategia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S2010%2FBMD-2414/ES/Programación de circuitos microbianos en medicina protectiva y terapéutica (PROMPT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIBER-BBN//CB06%2F02%2F0053/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-39816-C02-01/ES/BIOLOGIA DE SISTEMAS DE LAS INTERACCIONES ENTRE LOS INSECTOS Y SUS SIMBIONTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2009%2F092/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SAF2013-49788-EXP/ES/INNOVACION EN MODELOS COMPUTACIONALES PREDICTIVOS EN EPIDEMIOLOGIA EXPERIMENTAL DE LA RESISTENCIA A LOS ANTIBIOTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CD12%2F00492/ES/CD12%2F00492/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Campos Frances, M.; Llorens, C.; Sempere Luna, JM.; Futami, R.; Rodríguez, I.; Carrasco, P.; Capilla, R.... (2015). A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biology Direct. 10(41):1-13. https://doi.org/10.1186/s13062-015-0070-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/s13062-015-0070-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 41 es_ES
dc.relation.senia 295800 es_ES
dc.identifier.pmid 26243297 en_EN
dc.identifier.pmcid PMC4526193 en_EN
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Baquero F, Coque TM, Canton R. Counteracting antibiotic resistance: breaking barriers among antibacterial strategies. Expert Opin Ther Targets. 2014;18:851–61. es_ES
dc.description.references Baquero F, Lanza VF, Canton R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl. 2014;8:223–39. es_ES
dc.description.references Baquero F, Coque TM, de la Cruz F. Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother. 2011;55:3649–60. es_ES
dc.description.references Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D, et al. Ready for a world without antibiotics? The pensieres antibiotic resistance call to action. Antimicrob Resist Infect Control. 2012;1:11. es_ES
dc.description.references Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13:1057–98. es_ES
dc.description.references G8-Science-Ministers-Statement. 2013. https://www.gov.uk/government/news/g8-science-ministers-statement . es_ES
dc.description.references Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:S122–9. es_ES
dc.description.references Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis. 2013;13:155–65. es_ES
dc.description.references Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24:718–33. es_ES
dc.description.references Marshall BM, Ochieng DJ, Levy SB. Commensals: underappreciated reservoir of antibiotic resistance. Microbe. 2009;4:231–8. es_ES
dc.description.references Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337:1107–11. es_ES
dc.description.references Heuer H, Schmitt H, Smalla K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol. 2011;14:236–43. es_ES
dc.description.references Teillant A, Laxminarayan R. Economics of Antibiotic Use in U.S. Swine and Poultry Production. Choices. 2015;30:1. 1st Quarter 2015. es_ES
dc.description.references ANTIBIOTIC RESISTANCE THREATS in the United States. http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf . es_ES
dc.description.references Gillings MR. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol. 2013;4:4. es_ES
dc.description.references Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–33. es_ES
dc.description.references Palmer AC, Kishony R. Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat Rev Genet. 2013;14:243–8. es_ES
dc.description.references Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol. 2013;4:15. es_ES
dc.description.references Partridge SR. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev. 2011;35:820–55. es_ES
dc.description.references Baquero F, Coque TM. Multilevel population genetics in antibiotic resistance. FEMS Microbiol Rev. 2011;35:705–6. es_ES
dc.description.references Martinez JL, Baquero F, Andersson DI. Predicting antibiotic resistance. Nat Rev Microbiol. 2007;5:958–65. es_ES
dc.description.references Martinez JL, Baquero F. Emergence and spread of antibiotic resistance: setting a parameter space. Upsala Journal of Medical Sciences. Upsala J Med Sci. 2014, Early Online: 1–10, doi: 10.3109/03009734.2014.901444 ). es_ES
dc.description.references Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012;18 Suppl 4:2–4. es_ES
dc.description.references Kumsa B, Socolovschi C, Parola P, Rolain JM, Raoult D. Molecular detection of Acinetobacter species in lice and keds of domestic animals in Oromia Regional State. Ethiopia PLoS One. 2012;7:e52377. es_ES
dc.description.references Ahmad A, Ghosh A, Schal C, Zurek L. Insects in confined swine operations carry a large antibiotic resistant and potentially virulent enterococcal community. BMC Microbiol. 2011;11:23. es_ES
dc.description.references Graczyk TK, Knight R, Gilman RH, Cranfield MR. The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect. 2001;3:231–5. es_ES
dc.description.references Limoee M, Enayati AA, Khassi K, Salimi M, Ladonni H. Insecticide resistance and synergism of three field-collected strains of the German cockroach Blattella germanica (L.) (Dictyoptera: Blattellidae) from hospitals in Kermanshah, Iran. Trop Biomed. 2011;28:111–8. es_ES
dc.description.references Salehzadeha A, Tavacolb P, Mahjubc H. Bacterial, fungal and parasitic contamination of cockroaches in public hospitals of Hamadan, Iran. J Vect Borne Dis. 2007;44:105–10. es_ES
dc.description.references Akinjogunla OJ, Odeyemi AT, Udoinyang EP. Cockroaches (periplaneta americana and blattella germanica): reservoirs of multi drug resistant (MDR) bacteria in Uyo, Akwa Ibom State. Scientific J Biol Sci. 2012;1:19–30. es_ES
dc.description.references Mideo N, Alizon S, Day T. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol Evol. 2008;23:511–7. es_ES
dc.description.references Gillings MR, Stokes HW. Are humans increasing bacterial evolvability? Trends EcolEvol. 2012;27:346–52. es_ES
dc.description.references Baquero F. Environmental stress and evolvability in microbial systems. Clin Microbiol Infect. 2009;15 Suppl 1:5–10. es_ES
dc.description.references Paun G, Rozemberg G, Salomaa A. The Oxford Handbook of Membrane Computing. Oxford, London. Oxford University Press. 2010. es_ES
dc.description.references Paun G. Membrane Computing. An Introduction. Berlin, Heidelberg. Springer-Verlag GmbH. 2002. es_ES
dc.description.references Paun G. Computing with membranes. J Comput Syst Sci. 2000;61:108–43. es_ES
dc.description.references Fontana F, Biancom L, Manca V. P systems and the modeling of biochemical oscillations. Lect Notes Comput Sci. 2006;3850:199–208. es_ES
dc.description.references Cheruku S, Paun A, Romero-Campero FJ, Perez-Jimenez MJ, Ibarra OH. Simulating FAS-induced apoptosis by using P systems. Prog Nat Sci. 2007;4:424–31. es_ES
dc.description.references Perez-Jimenez MJ, Romero-Campero FJ. P systems, a new computational modelling tool for systems biology. Transactions on computational systems. Lect N Bioinformat. 2006;Biology VI:176–97. es_ES
dc.description.references Romero-Campero FJ, Perez-Jimenez MJ. Modelling gene expression control using P systems: The Lac Operon, a case study. Biosystems. 2008;91:438–57. es_ES
dc.description.references Romero-Campero FJ, Perez-Jimenez MJ. A model of the quorum sensing system in Vibrio fischeri using P systems. Artif Life. 2008;14:95–109. es_ES
dc.description.references Besozzi D, Cazzaniga P, Pescini D, Mauri G. Modelling metapopulations with stochastic membrane systems. Biosystems. 2008;91:499–514. es_ES
dc.description.references Cardona M, Colomer MA, Perez-Jimenez MJ, Sanuy D, Margalida A. Modelling ecosystems using P Systems: The Bearded Vulture, a case of study. Lect Notes Comput Sci. 2009;5391:137–56. es_ES
dc.description.references Cardona M, Colomer MA, Margalida A, Perez-Hurtado I, Perez-Jimenez MJ, Sanuy D. A P system based model of an ecosystem of some scavenger birds. Lect Notes Comput Sci. 2010;5957:182–95. es_ES
dc.description.references Frisco P, Gheorghe M, Perez-Jimenez M. Applications of Membrane Computing in Systems and Synthetic biology. Cham. Springer International Publishing. 2014. es_ES
dc.description.references Membrane Computing Community. http://ppage.psystems.eu . es_ES
dc.description.references P-Lingua. http://www.p-lingua.org/wiki/index.php/Main_Page . es_ES
dc.description.references Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 2011;39:D70–4. es_ES
dc.description.references Baquero F. From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat Rev Microbiol. 2004;2:510–8. es_ES
dc.description.references Java. http://www.java.com . es_ES
dc.description.references Garcia-Quismondo M, Gutierrez-Escudero R, Martinez-del-Amor MA, Orejuela-Pinedo E, Pérez-Hurtado I. P-Lingua 2.0: a software framework for cell-like P systems. Int J Comput Commun. 2009;IV:234. es_ES
dc.description.references R programming language. http://www.r-project.org . es_ES
dc.description.references Maciel A, Sankaranarayanan G, Halic T, Arikatla VS, Lu Z, De S. Surgical model-view-controller simulation software framework for local and collaborative applications. Int J Comput Assist Radiol Surg. 2011;6:457–71. es_ES
dc.description.references Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449:811–8. es_ES
dc.description.references Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6:776–88. es_ES
dc.description.references Pallen MJ, Wren BW. Bacterial pathogenomics. Nature. 2007;449:835–42. es_ES
dc.description.references Carrasco P, Perez-Cobas AE, Van de Pol C, Baixeras J, Moya A, Latorre A. Succession of the gut microbiota in the cockroach Blattella germanica. Int Microbiol. 2014;17:99–109. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem