- -

Contex-aware gestures for mixed-initiative text editings UIs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Contex-aware gestures for mixed-initiative text editings UIs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Leiva, Luis A. es_ES
dc.contributor.author Alabau, Vicent es_ES
dc.contributor.author Romero Gómez, Verónica es_ES
dc.contributor.author Toselli, Alejandro Héctor es_ES
dc.contributor.author Vidal, Enrique es_ES
dc.date.accessioned 2016-05-31T10:24:10Z
dc.date.available 2016-05-31T10:24:10Z
dc.date.issued 2015
dc.identifier.issn 0953-5438
dc.identifier.uri http://hdl.handle.net/10251/64993
dc.description This is a pre-copyedited, author-produced PDF of an article accepted for publication in Interacting with computers following peer review. The version of record is available online at: http://dx.doi.org/10.1093/iwc/iwu019 es_ES
dc.description.abstract [EN] This work is focused on enhancing highly interactive text-editing applications with gestures. Concretely, we study Computer Assisted Transcription of Text Images (CATTI), a handwriting transcription system that follows a corrective feedback paradigm, where both the user and the system collaborate efficiently to produce a high-quality text transcription. CATTI-like applications demand fast and accurate gesture recognition, for which we observed that current gesture recognizers are not adequate enough. In response to this need we developed MinGestures, a parametric context-aware gesture recognizer. Our contributions include a number of stroke features for disambiguating copy-mark gestures from handwritten text, plus the integration of these gestures in a CATTI application. It becomes finally possible to create highly interactive stroke-based text-editing interfaces, without worrying to verify the user intent on-screen. We performed a formal evaluation with 22 e-pen users and 32 mouse users using a gesture vocabulary of 10 symbols. MinGestures achieved an outstanding accuracy (<1% error rate) with very high performance (<1 ms of recognition time). We then integrated MinGestures in a CATTI prototype and tested the performance of the interactive handwriting system when it is driven by gestures. Our results show that using gestures in interactive handwriting applications is both advantageous and convenient when gestures are simple but context-aware. Taken together, this work suggests that text-editing interfaces not only can be easily augmented with simple gestures, but also may substantially improve user productivity. es_ES
dc.description.sponsorship This work has been supported by the European Commission through the 7th Framework Program (tranScriptorium: FP7- ICT-2011-9, project 600707 and CasMaCat: FP7-ICT-2011-7, project 287576). It has also been supported by the Spanish MINECO under grant TIN2012-37475-C02-01 (STraDa), and the Generalitat Valenciana under grant ISIC/2012/004 (AMIIS).
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Interacting with Computers es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Natural language interfaces es_ES
dc.subject Gestural input es_ES
dc.subject Online handwriting recognition es_ES
dc.subject Handwriting transcription es_ES
dc.subject Gesture recognition es_ES
dc.subject Interactive text edition es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Contex-aware gestures for mixed-initiative text editings UIs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/iwc/iwu019
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/600707/EU/tranScriptorium/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2012-37475-C02-01/ES/SEARCH IN TRANSCRIBED MANUSCRIPTS AND DOCUMENT AUGMENTATION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ISIC%2F2012%2F004/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Leiva, LA.; Alabau, V.; Romero Gómez, V.; Toselli, AH.; Vidal, E. (2015). Contex-aware gestures for mixed-initiative text editings UIs. Interacting with Computers. 27(6):675-696. https://doi.org/10.1093/iwc/iwu019 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1093/iwc/iwu019 es_ES
dc.description.upvformatpinicio 675 es_ES
dc.description.upvformatpfin 696 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 282218 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.description.references Alabau V. Leiva L. A. Transcribing Handwritten Text Images with a Word Soup Game. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA) 2012. es_ES
dc.description.references Alabau V. Rodríguez-Ruiz L. Sanchis A. Martínez-Gómez P. Casacuberta F. On Multimodal Interactive Machine Translation Using Speech Recognition. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2011a. es_ES
dc.description.references Alabau V. Sanchis A. Casacuberta F. Improving On-Line Handwritten Recognition using Translation Models in Multimodal Interactive Machine Translation. Proc. Assoc. Comput. Linguistics (ACL) 2011b. es_ES
dc.description.references Alabau, V., Sanchis, A., & Casacuberta, F. (2014). Improving on-line handwritten recognition in interactive machine translation. Pattern Recognition, 47(3), 1217-1228. doi:10.1016/j.patcog.2013.09.035 es_ES
dc.description.references Anthony L. Wobbrock J. O. A Lightweight Multistroke Recognizer for User Interface Prototypes. Proc. Conf. Graph. Interface (GI). 2010. es_ES
dc.description.references Anthony L. Wobbrock J. O. $N-Protractor: a Fast and Accurate Multistroke Recognizer. Proc. Conf. Graph. Interface (GI) 2012. es_ES
dc.description.references Anthony L. Vatavu R.-D. Wobbrock J. O. Understanding the Consistency of Users' Pen and Finger Stroke Gesture Articulation. Proc. Conf. Graph. Interface (GI). 2013. es_ES
dc.description.references Appert C. Zhai S. Using Strokes as Command Shortcuts: Cognitive Benefits and Toolkit Support. Proc. SIGCHI Conf. Hum. Fact. Comput. Syst. (CHI) 2009. es_ES
dc.description.references Bahlmann C. Haasdonk B. Burkhardt H. On-Line Handwriting Recognition with Support Vector Machines: A Kernel Approach. Proc. Int. Workshop Frontiers Handwriting Recognition (IWFHR). 2001. es_ES
dc.description.references Bailly G. Lecolinet E. Nigay L. Flower Menus: a New Type of Marking Menu with Large Menu Breadth, within Groups and Efficient Expert Mode Memorization. Proc.Work. Conf. Adv. Vis. Interfaces (AVI) 2008. es_ES
dc.description.references Balakrishnan R. Patel P. The PadMouse: Facilitating Selection and Spatial Positioning for the Non-Dominant Hand. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 1998. es_ES
dc.description.references Bau O. Mackay W. E. Octopocus: A Dynamic Guide for Learning Gesture-Based Command Sets. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2008. es_ES
dc.description.references Belaid A. Haton J. A syntactic approach for handwritten formula recognition. IEEE Trans. Pattern Anal. Mach. Intell. 1984;6:105-111. es_ES
dc.description.references Bosch V. Bordes-Cabrera I. Munoz P. C. Hernández-Tornero C. Leiva L. A. Pastor M. Romero V. Toselli A. H. Vidal E. Transcribing a XVII Century Handwritten Botanical Specimen Book from Scratch. Proc. Int. Conf. Digital Access Textual Cultural Heritage (DATeCH). 2014. es_ES
dc.description.references Buxton W. The natural language of interaction: a perspective on non-verbal dialogues. INFOR 1988;26:428-438. es_ES
dc.description.references Cao X. Zhai S. Modeling Human Performance of Pen Stroke Gestures. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2007. es_ES
dc.description.references Castro-Bleda M. J. España-Boquera S. Llorens D. Marzal A. Prat F. Vilar J. M. Zamora-Martinez F. Speech Interaction in a Multimodal Tool for Handwritten Text Transcription. Proc. Int. Conf. Multimodal Interfaces (ICMI) 2011. es_ES
dc.description.references Connell S. D. Jain A. K. Template-based on-line character recognition. Pattern Recognition 2000;34:1-14. es_ES
dc.description.references Costagliola G. Deufemia V. Polese G. Risi M. A Parsing Technique for Sketch Recognition Systems. Proc. 2004 IEEE Symp. Vis. Lang. Hum. Centric Comput. (VLHCC). 2004. es_ES
dc.description.references Culotta, A., Kristjansson, T., McCallum, A., & Viola, P. (2006). Corrective feedback and persistent learning for information extraction. Artificial Intelligence, 170(14-15), 1101-1122. doi:10.1016/j.artint.2006.08.001 es_ES
dc.description.references Deepu V. Madhvanath S. Ramakrishnan A. Principal Component Analysis for Online Handwritten Character Recognition. Proc. Int. Conf. Pattern Recognition (ICPR). 2004. es_ES
dc.description.references Delaye A. Sekkal R. Anquetil E. Continuous Marking Menus for Learning Cursive Pen-Based Gestures. Proc. Int. Conf. Intell. User Interfaces (IUI) 2011. es_ES
dc.description.references Dimitriadis Y. Coronado J. Towards an art-based mathematical editor that uses on-line handwritten symbol recognition. Pattern Recognition 1995;8:807-822. es_ES
dc.description.references El Meseery M. El Din M. F. Mashali S. Fayek M. Darwish N. Sketch Recognition Using Particle Swarm Algorithms. Proc. 16th IEEE Int. Conf. Image Process. (ICIP). 2009. es_ES
dc.description.references Goldberg D. Goodisman A. Stylus User Interfaces for Manipulating Text. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 1991. es_ES
dc.description.references Goldberg D. Richardson C. Touch-Typing with a Stylus. Proc. INTERCHI'93 Conf. Hum. Factors Comput. Syst. 1993. es_ES
dc.description.references Stevens, M. E. (1968). Selected pattern recognition projects in Europe. Pattern Recognition, 1(2), 103-118. doi:10.1016/0031-3203(68)90002-2 es_ES
dc.description.references Hardock G. Design Issues for Line Driven Text Editing/ Annotation Systems. Proc. Conf. Graph. Interface (GI). 1991. es_ES
dc.description.references Hardock G. Kurtenbach G. Buxton W. A Marking Based Interface for Collaborative Writing. Proc.ACM Symp. User Interface Softw. Technol. (UIST) 1993. es_ES
dc.description.references Hinckley K. Baudisch P. Ramos G. Guimbretiere F. Design and Analysis of Delimiters for Selection-Action Pen Gesture Phrases in Scriboli. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2005. es_ES
dc.description.references Hong J. I. Landay J. A. SATIN: A Toolkit for Informal Ink-Based Applications. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2000. es_ES
dc.description.references Horvitz E. Principles of Mixed-Initiative User Interfaces. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 1999. es_ES
dc.description.references Huerst W. Yang J. Waibel A. Interactive Error Repair for an Online Handwriting Interface. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI) 2010. es_ES
dc.description.references Jelinek F. Cambridge, Massachusetts: MIT Press; 1998. Statistical Methods for Speech Recognition. es_ES
dc.description.references Johansson S. Atwell E. Garside R. Leech G. The Tagged LOB Corpus, User's Manual. Norwegian Computing Center for the Humanities. 1996. es_ES
dc.description.references Karat C.-M. Halverson C. Horn D. Karat J. Patterns of Entry and Correction in Large Vocabulary Continuous Speech Recognition Systems. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 1999. es_ES
dc.description.references Kerrick, D. D., & Bovik, A. C. (1988). Microprocessor-based recognition of handprinted characters from a tablet input. Pattern Recognition, 21(5), 525-537. doi:10.1016/0031-3203(88)90011-8 es_ES
dc.description.references Koschinski M. Winkler H. Lang M. Segmentation and Recognition of Symbols within Handwritten Mathematical Expressions. Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP). 1995. es_ES
dc.description.references Kosmala A. Rigoll G. On-Line Handwritten Formula Recognition Using Statistical Methods. Proc. Int. Conf. Pattern Recognition (ICPR) 1998. es_ES
dc.description.references Kristensson P. O. Discrete and continuous shape writing for text entry and control. 2007. Ph.D. Thesis, Linköping University, Sweden. es_ES
dc.description.references Kristensson P. O. Denby L. C. Text Entry Performance of State of the Art Unconstrained Handwriting Recognition: a Longitudinal User Study. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2009. es_ES
dc.description.references Kristensson P. O. Denby L. C. Continuous Recognition and Visualization of Pen Strokes and Touch-Screen Gestures. Proc. Eighth Eurograph. Symp. Sketch-Based Interfaces Model. (SBIM) 2011. es_ES
dc.description.references Kristensson P. O. Zhai S. SHARK2: A Large Vocabulary Shorthand Writing System for Pen-Based Computers. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 2004. es_ES
dc.description.references Kurtenbach G. P. The design and evaluation of marking menus. 1991. Ph.D. Thesis, University of Toronto. es_ES
dc.description.references Kurtenbach G. P. Buxton W. Issues in Combining Marking and Direct Manipulation Techniques. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 1991. es_ES
dc.description.references Kurtenbach G. Buxton W. User Learning and Performance with Marking Menus. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA) 1994. es_ES
dc.description.references Kurtenbach, G., Sellen, A., & Buxton, W. (1993). An Empirical Evaluation of Some Articulatory and Cognitive Aspects of Marking Menus. Human-Computer Interaction, 8(1), 1-23. doi:10.1207/s15327051hci0801_1 es_ES
dc.description.references LaLomia M. User Acceptance of Handwritten Recognition Accuracy. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA). 1994. es_ES
dc.description.references Leiva L. A. Romero V. Toselli A. H. Vidal E. Evaluating an Interactive–Predictive Paradigm on Handwriting Transcription: A Case Study and Lessons Learned. Proc. 35th Annu. IEEE Comput. Softw. Appl. Conf. (COMPSAC) 2011. es_ES
dc.description.references Leiva L. A. Alabau V. Vidal E. Error-Proof, High-Performance, and Context-Aware Gestures for Interactive Text Edition. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA). 2013. es_ES
dc.description.references Li Y. Protractor: A Fast and Accurate Gesture Recognizer. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI) 2010. es_ES
dc.description.references Li W. Hammond T. Using Scribble Gestures to Enhance Editing Behaviors of Sketch Recognition Systems. Proc. Extended Abstr. Hum. Factors Comput. Syst. (CHI EA). 2012. es_ES
dc.description.references Liao C. Guimbretière F. Hinckley K. Hollan J. Papiercraft: a gesture-based command system for interactive paper. ACM Trans. Comput.–Hum. Interaction (TOCHI) 2008;14:18:1-18:27. es_ES
dc.description.references Liu P. Soong F. K. Word Graph Based Speech Rcognition Error Correction by Handwriting Input. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2006. es_ES
dc.description.references Long A. Landay J. Rowe L. Implications for a Gesture Design Tool. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI) 1999. es_ES
dc.description.references Long A. C. Jr. Landay J. A. Rowe L. A. Michiels J. Visual Similarity of Pen Gestures. Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI). 2000. es_ES
dc.description.references MacKenzie, I. S., & Chang, L. (1999). A performance comparison of two handwriting recognizers. Interacting with Computers, 11(3), 283-297. doi:10.1016/s0953-5438(98)00030-7 es_ES
dc.description.references MacKenzie I. S. Tanaka-Ishii K. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 2007. Text Entry Systems: Mobility, Accessibility, Universality. es_ES
dc.description.references MARTI, U.-V., & BUNKE, H. (2001). USING A STATISTICAL LANGUAGE MODEL TO IMPROVE THE PERFORMANCE OF AN HMM-BASED CURSIVE HANDWRITING RECOGNITION SYSTEM. International Journal of Pattern Recognition and Artificial Intelligence, 15(01), 65-90. doi:10.1142/s0218001401000848 es_ES
dc.description.references Marti, U.-V., & Bunke, H. (2002). The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition, 5(1), 39-46. doi:10.1007/s100320200071 es_ES
dc.description.references Martín-Albo D. Romero V. Toselli A. H. Vidal E. Multimodal computer-assisted transcription of text images at character-level interaction. Int. J. Pattern Recogn. Artif. Intell. 2012;26:1-19. es_ES
dc.description.references Marzinkewitsch R. Operating Computer Algebra Systems by Hand-Printed Input. Proc. Int. Symp. Symbolic Algebr. Comput. (ISSAC). 1991. es_ES
dc.description.references Mas, J., Llados, J., Sanchez, G., & Jorge, J. A. P. (2010). A syntactic approach based on distortion-tolerant Adjacency Grammars and a spatial-directed parser to interpret sketched diagrams. Pattern Recognition, 43(12), 4148-4164. doi:10.1016/j.patcog.2010.07.003 es_ES
dc.description.references Moyle M. Cockburn A. Analysing Mouse and Pen Flick Gestures. Proc. SIGCHI-NZ Symp. Comput.–Hum. Interact. (CHINZ). 2002. es_ES
dc.description.references Nakayama Y. A Prototype Pen-Input Mathematical Formula Editor. Proc. AACE EdMedia 1993. es_ES
dc.description.references Ogata J. Goto M. Speech Repair: Quick Error Correction Just by Using Selection Operation for Speech Input Interface. Proc. Eurospeech. 2005. es_ES
dc.description.references Ortiz-Martínez D. Leiva L. A. Alabau V. Casacuberta F. Interactive Machine Translation using a Web-Based Architecture. Proc. Int. Conf. Intell. User Interfaces (IUI) 2010. es_ES
dc.description.references Ortiz-Martínez D. Leiva L. A. Alabau V. García-Varea I. Casacuberta F. An Interactive Machine Translation System with Online Learning. Proc. Assoc. Comput. Linguist. (ACL). 2011. es_ES
dc.description.references Michael Powers, V. (1973). Pen direction sequences in character recognition. Pattern Recognition, 5(4), 291-302. doi:10.1016/0031-3203(73)90022-8 es_ES
dc.description.references Raab F. Extremely efficient menu selection: Marking menus for the Flash platform. 2009. Available at http://www.betriebsraum.de/blog/2009/07/21/efficient-gesture-recognition-and-corner-finding-in-as3/ (retrieved on May 2012). es_ES
dc.description.references Revuelta-Martínez A. Rodríguez L. García-Varea I. A Computer Assisted Speech Transcription System. Proc. Eur. Chap. Assoc. Comput. Linguist. (EACL). 2012. es_ES
dc.description.references Revuelta-Martínez, A., Rodríguez, L., García-Varea, I., & Montero, F. (2013). Multimodal interaction for information retrieval using natural language. Computer Standards & Interfaces, 35(5), 428-441. doi:10.1016/j.csi.2012.11.002 es_ES
dc.description.references Rodríguez L. García-Varea I. Revuelta-Martínez A. Vidal E. A Multimodal Interactive Text Generation System. Proc. Int. Conf. Multimodal Interfaces Workshop Mach. Learn. Multimodal Interact. (ICMI-MLMI). 2010a. es_ES
dc.description.references Rodríguez L. García-Varea I. Vidal E. Multi-Modal Computer Assisted Speech Transcription. Proc. Int. Conf. Multimodal Interfaces Workshop Mach. Learn. Multimodal Interact. (ICMI-MLMI) 2010b. es_ES
dc.description.references Romero V. Leiva L. A. Toselli A. H. Vidal E. Interactive Multimodal Transcription of Text Images using a Web-Based Demo System. Proc. Int. Conf. Intell. User Interfaces (IUI). 2009a. es_ES
dc.description.references Romero V. Toselli A. H. Vidal E. Using Mouse Feedback in Computer Assisted Transcription of Handwritten Text Images. Proc. Int. Conf. Doc. Anal. Recogn. (ICDAR) 2009b. es_ES
dc.description.references Romero V. Toselli A. H. Vidal E. Study of Different Interactive Editing Operations in an Assisted Transcription System. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2011. es_ES
dc.description.references Romero V. Toselli A. H. Vidal E. Vol. 80. Singapore: World Scientific Publishing Company; 2012. Multimodal Interactive Handwritten Text Transcription. es_ES
dc.description.references Rubine, D. (1991). Specifying gestures by example. ACM SIGGRAPH Computer Graphics, 25(4), 329-337. doi:10.1145/127719.122753 es_ES
dc.description.references Rubine D. H. 1991b. The automatic recognition of gestures. Ph.D. Thesis, Carnegie Mellon University. es_ES
dc.description.references Sánchez-Sáez R. Leiva L. A. Sánchez J. A. Benedí J. M. Interactive Predictive Parsing using a Web-Based Architecture. Proc. North Am. Chap. Assoc. Comput. Linguist. 2010. es_ES
dc.description.references Saund E. Fleet D. Larner D. Mahoney J. Perceptually-Supported Image Editing of Text and Graphics. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2003. es_ES
dc.description.references Shilman M. Tan D. S. Simard P. CueTIP: a Mixed-Initiative Interface for Correcting Handwriting Errors. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 2006. es_ES
dc.description.references Signer B. Kurmann U. Norrie M. C. igesture: A General Gesture Recognition Framework. Proc. Int. Conf. Doc. Anal. Recogn. (ICDAR) 2007. es_ES
dc.description.references Smithies S. Novins K. Arvo J. A handwriting-based equation editor. Proc. Conf. Graph. Interface (GI). 1999. es_ES
dc.description.references Suhm, B., Myers, B., & Waibel, A. (2001). Multimodal error correction for speech user interfaces. ACM Transactions on Computer-Human Interaction, 8(1), 60-98. doi:10.1145/371127.371166 es_ES
dc.description.references Tappert C. C. Mosley P. H. Recent advances in pen computing. 2001. Technical Report 166, Pace University, available: http://support.csis.pace.edu. es_ES
dc.description.references Toselli, A. H., Romero, V., Pastor, M., & Vidal, E. (2010). Multimodal interactive transcription of text images. Pattern Recognition, 43(5), 1814-1825. doi:10.1016/j.patcog.2009.11.019 es_ES
dc.description.references Toselli A. H. Vidal E. Casacuberta F. , editors. Berlin, Heidelberg, New York: Springer; 2011. Multimodal-Interactive Pattern Recognition and Applications. es_ES
dc.description.references Tseng S. Fogg B. Credibility and computing technology. Commun. ACM 1999;42:39-44. es_ES
dc.description.references Vatavu R.-D. Anthony L. Wobbrock J. O. Gestures as Point Clouds: A $P Recognizer for User Interface Prototypes. Proc. Int. Conf. Multimodal Interfaces (ICMI). 2012. es_ES
dc.description.references Vertanen K. Kristensson P. O. Parakeet: A Continuous Speech Recognition System for Mobile Touch-Screen Devices. Proc. Int. Conf. Intell. User Interfaces (IUI) 2009. es_ES
dc.description.references Vidal E. Rodríguez L. Casacuberta F. García-Varea I. Mach. Learn. Multimodal Interact., Lect. Notes Comput. Sci. Vol. 4892. Berlin, Heidelberg: Springer; 2008. Interactive Pattern Recognition. es_ES
dc.description.references Wang X. Li J. Ao X. Wang G. Dai G. Multimodal Error Correction for Continuous Handwriting Recognition in Pen-Based User Interfaces. Proc. Int. Conf. Intell. User Interfaces (IUI). 2006. es_ES
dc.description.references Wang L. Hu T. Liu P. Soong F. K. Efficient Handwriting Correction of Speech Recognition Errors with Template Constrained Posterior (TCP). Proc. INTERSPEECH 2008. es_ES
dc.description.references Wobbrock J. O. Wilson A. D. Li Y. Gestures without Libraries, Toolkits or Training: A $1 Recognizer for User Interface Prototypes. Proc. ACM Symp. User Interface Softw. Technol. (UIST). 2007. es_ES
dc.description.references Wolf C. G. Morrel-Samuels P. The use of hand-drawn gestures for text editing. Int. J. Man–Mach. Stud. 1987;27:91-102. es_ES
dc.description.references Zeleznik R. Miller T. Fluid Inking: Augmenting the Medium of Free-Form Inking with Gestures. Proc. Conf. Graph. Interface (GI). 2006. es_ES
dc.description.references Yong Zhang, McCullough, C., Sullins, J. R., & Ross, C. R. (2010). Hand-Drawn Face Sketch Recognition by Humans and a PCA-Based Algorithm for Forensic Applications. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(3), 475-485. doi:10.1109/tsmca.2010.2041654 es_ES
dc.description.references Zhao S. Balakrishnan R. Simple vs. Compound Mark Hierarchical Marking Menus. Proc. ACM Symp. User Interface Softw. Technol. (UIST) 2004. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem