Mostrar el registro sencillo del ítem
dc.contributor.author | Pallares, Vicente | es_ES |
dc.contributor.author | Moya Payá, Javier | es_ES |
dc.contributor.author | Samper Belda, Francisco José | es_ES |
dc.contributor.author | Canals, Santiago | es_ES |
dc.contributor.author | Moratal Pérez, David | es_ES |
dc.date.accessioned | 2016-05-31T10:33:34Z | |
dc.date.available | 2016-05-31T10:33:34Z | |
dc.date.issued | 2015-09 | |
dc.identifier.issn | 0169-2607 | |
dc.identifier.uri | http://hdl.handle.net/10251/64994 | |
dc.description.abstract | [EN] Background and objective Meaningful targeting of brain structures is required in a number of experimental designs in neuroscience. Current technological developments as high density electrode arrays for parallel electrophysiological recordings and optogenetic tools that allow fine control of activity in specific cell populations provide powerful tools to investigate brain physio-pathology. However, to extract the maximum yield from these fine developments, increased precision, reproducibility and cost-efficiency in experimental procedures is also required. Methods We introduce here a framework based on magnetic resonance imaging (MRI) and digitized brain atlases to produce customizable 3D-environments for brain navigation. It allows the use of individualized anatomical and/or functional information from multiple MRI modalities to assist experimental neurosurgery planning and in vivo tissue processing. Results As a proof of concept we show three examples of experimental designs facilitated by the presented framework, with extraordinary applicability in neuroscience. Conclusions The obtained results illustrate its feasibility for identifying and selecting functionally and/or anatomically connected neuronal population in vivo and directing electrode implantations to targeted nodes in the intricate system of brain networks. | es_ES |
dc.description.sponsorship | The authors would like to thank Adam J. Schwarz (Translational Imaging, Exploratory and Program Medicine, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, USA) for his fruitful collaboration providing us the initial digital multislice 2D rat brain atlas. We also thank Begona Fernandez for her excellent technical assistance. The authors are grateful to Guillermina Lopez-Bendito, Graciela Navarro and Henrik Gezelius for their help with intra-vitreal manganese injections and Jesus Pacheco for MRI assistance. This work was supported by the Spanish Ministerio de Ciencia e Innovacion, Plan Nacional de I+D+I (CSD2007-00023, BFU2009-09938 and PIM2010ERN-00679 part of the Era-Net NEURON TRANSALC project), and by the Spanish Ministerio de Economia y Competitividad (MINECO) and by FEDER funds under Grant TEC2012-33778. | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MRI | es_ES |
dc.subject | Neurosurgery planning | es_ES |
dc.subject | Computerized rat brain atlas | es_ES |
dc.subject | Electric microstimulation | es_ES |
dc.subject | Functional connectivity | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Neurosurgery planning in rodents using a magnetic resonance imaging assisted framework to target experimentally defined networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2015.05.011 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00023/ES/NERVOUS SYSTEM DEVELOPMENT AND PLASTICITY/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2012-33778/ES/CARACTERIZACION CUANTITATIVA DE LA METASTASIS VERTEBRAL MEDIANTE ANALISIS DE IMAGEN DE TC Y MODELADO POR ELEMENTOS FINITOS PARA LA DETERMINACION DEL RIESGO DE FRACTURA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PIM2010ERN-00679/ES/CIRCUITOS NEURONALES DISFUNCIONALES EN ALCOHOLISMO: CONECTIVIDAD CEREBRAL COMO INDICE TERAPEUTICO/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2009-09938/ES/Plasticidad De Las Redes Neuronales En El Aprendizaje: Estudio Combinado De Rmn Funcional, Electrofisiologia Y Comportamiento/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Pallares, V.; Moya Payá, J.; Samper Belda, FJ.; Canals, S.; Moratal Pérez, D. (2015). Neurosurgery planning in rodents using a magnetic resonance imaging assisted framework to target experimentally defined networks. Computer Methods and Programs in Biomedicine. 121(2):66-76. https://doi.org/10.1016/j.cmpb.2015.05.011 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.cmpb.7015.05.011 | es_ES |
dc.description.upvformatpinicio | 66 | es_ES |
dc.description.upvformatpfin | 76 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 121 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 301339 | es_ES |
dc.identifier.eissn | 1872-7565 | |
dc.identifier.pmid | 26094858 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Ministerio de Economía y Competitividad |