- -

Evaluation of different heat transfer conditions on an automotive turbocharger

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluation of different heat transfer conditions on an automotive turbocharger

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aghaali, Habib es_ES
dc.contributor.author Angström, Hans-Erik es_ES
dc.contributor.author Serrano Cruz, José Ramón es_ES
dc.date.accessioned 2016-05-31T11:12:36Z
dc.date.available 2016-05-31T11:12:36Z
dc.date.issued 2015-02
dc.identifier.issn 1468-0874
dc.identifier.uri http://hdl.handle.net/10251/64995
dc.description.abstract This paper presents a combination of theoretical and experimental investigations for determining the main heat fluxes within a turbocharger. These investigations consider several engine speeds and loads as well as different methods of conduction, convection, and radiation heat transfer on the turbocharger. A one-dimensional heat transfer model of the turbocharger has been developed in combination with simulation of a turbocharged engine that includes the heat transfer of the turbocharger. Both the heat transfer model and the simulation were validated against experimental measurements. Various methods were compared for calculating heat transfer from the external surfaces of the turbocharger, and one new method was suggested. The effects of different heat transfer conditions were studied on the heat fluxes of the turbocharger using experimental techniques. The different heat transfer conditions on the turbocharger created dissimilar temperature gradients across the turbocharger. The results show that changing the convection heat transfer condition around the turbocharger affects the heat fluxes more noticeably than changing the radiation and conduction heat transfer conditions. Moreover, the internal heat transfers from the turbine to the bearing housing and from the bearing housing to the compressor are significant, but there is an order of magnitude difference between these heat transfer rates. es_ES
dc.description.sponsorship The Swedish Energy Agency and KTH Royal Institute of Technology sponsored this work within the Competence Centre for Gas Exchange (CCGEx). en_EN
dc.language Inglés es_ES
dc.publisher SAGE Publications (UK and US) es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Turbocharger es_ES
dc.subject Heat transfer es_ES
dc.subject On-engine turbocharger es_ES
dc.subject Heat flux es_ES
dc.subject Convection es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Evaluation of different heat transfer conditions on an automotive turbocharger es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087414524755
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Aghaali, H.; Angström, H.; Serrano Cruz, JR. (2015). Evaluation of different heat transfer conditions on an automotive turbocharger. International Journal of Engine Research. 16(2):137-151. doi:10.1177/1468087414524755 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1177/1468087414524755 es_ES
dc.description.upvformatpinicio 137 es_ES
dc.description.upvformatpfin 151 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 280827 es_ES
dc.identifier.eissn 2041-3149
dc.contributor.funder Royal Institute of Technology, Suecia es_ES
dc.contributor.funder Swedish Energy Agency es_ES
dc.description.references Romagnoli, A., & Martinez-Botas, R. (2012). Heat transfer analysis in a turbocharger turbine: An experimental and computational evaluation. Applied Thermal Engineering, 38, 58-77. doi:10.1016/j.applthermaleng.2011.12.022 es_ES
dc.description.references Romagnoli, A., & Martinez-Botas, R. (2009). Heat Transfer on a Turbocharger Under Constant Load Points. Volume 5: Microturbines and Small Turbomachinery; Oil and Gas Applications. doi:10.1115/gt2009-59618 es_ES
dc.description.references Baines, N., Wygant, K. D., & Dris, A. (2010). The Analysis of Heat Transfer in Automotive Turbochargers. Journal of Engineering for Gas Turbines and Power, 132(4). doi:10.1115/1.3204586 es_ES
dc.description.references Serrano, J. R., Olmeda, P., Páez, A., & Vidal, F. (2010). An experimental procedure to determine heat transfer properties of turbochargers. Measurement Science and Technology, 21(3), 035109. doi:10.1088/0957-0233/21/3/035109 es_ES
dc.description.references Bohn, D., Heuer, T., & Kusterer, K. (2005). Conjugate Flow and Heat Transfer Investigation of a Turbo Charger. Journal of Engineering for Gas Turbines and Power, 127(3), 663-669. doi:10.1115/1.1839919 es_ES
dc.description.references Galindo, J., Luján, J. M., Serrano, J. R., Dolz, V., & Guilain, S. (2006). Description of a heat transfer model suitable to calculate transient processes of turbocharged diesel engines with one-dimensional gas-dynamic codes. Applied Thermal Engineering, 26(1), 66-76. doi:10.1016/j.applthermaleng.2005.04.010 es_ES
dc.description.references Sirakov, B., & Casey, M. (2012). Evaluation of Heat Transfer Effects on Turbocharger Performance. Journal of Turbomachinery, 135(2). doi:10.1115/1.4006608 es_ES
dc.description.references Serrano, J., Olmeda, P., Arnau, F., Reyes-Belmonte, M., & Lefebvre, A. (2013). Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications. SAE International Journal of Engines, 6(2), 716-728. doi:10.4271/2013-01-0576 es_ES
dc.description.references Larsson, P.-I., Westin, F., Andersen, J., Vetter, J., & Zumeta, A. (2009). Efficient turbo charger testing. MTZ worldwide, 70(7-8), 16-21. doi:10.1007/bf03226965 es_ES
dc.description.references Aghaali, H., & Ångström, H.-E. (2012). Turbocharged SI-Engine Simulation With Cold and Hot-Measured Turbocharger Performance Maps. Volume 5: Manufacturing Materials and Metallurgy; Marine; Microturbines and Small Turbomachinery; Supercritical CO2 Power Cycles. doi:10.1115/gt2012-68758 es_ES
dc.description.references Leufven, O., & Eriksson, L. (2012). Investigation of compressor correction quantities for automotive applications. International Journal of Engine Research, 13(6), 588-606. doi:10.1177/1468087412439018 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem