- -

Formations of monoids, congruences, and formal languages

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Formations of monoids, congruences, and formal languages

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballester Bolinches, Adolfo es_ES
dc.contributor.author Cosme-Llópez, E. es_ES
dc.contributor.author Esteban Romero, Ramón es_ES
dc.contributor.author Rutten, J.J.M.M. es_ES
dc.date.accessioned 2016-06-01T09:36:14Z
dc.date.available 2016-06-01T09:36:14Z
dc.date.issued 2015
dc.identifier.issn 1843-8121
dc.identifier.uri http://hdl.handle.net/10251/65036
dc.description.abstract The main goal in this paper is to use a dual equivalence in automata theory started in [25] and developed in [3] to prove a general version of the Eilenberg-type theorem presented in [4]. Our principal results confirm the existence of a bijective correspondence between three concepts; formations of monoids, formations of languages and formations of congruences. The result does not require finiteness on monoids, nor regularity on languages nor finite index conditions on congruences. We relate our work to other results in the field and we include applications to non-r-disjunctive languages, Reiterman s equational description of pseudovarieties and varieties of monoids. es_ES
dc.description.sponsorship The authors gratefully acknowledge various discussions with Jean-Eric Pin. This work has been supported by the grants MTM2010-19938-C03-01 from the Ministerio de Ciencia e Innovacion (Spanish Government) and MTM2014-54707-C3-1-P from the Ministerio de Economia y Competitividad (Spanish Government) and FEDER (European Union). The first author has been supported by the grant No. 11271085 from the National Natural Science Foundation of China. The second author has been supported by the predoctoral grant AP2010-2764 from the Ministeriode Educacion (Spanish Government) and by an internship from CWI. en_EN
dc.language Inglés es_ES
dc.publisher Alexandru Ioan Cuza University of Iasi es_ES
dc.relation.ispartof Scientific Annals of Computer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Formations es_ES
dc.subject Semigroups es_ES
dc.subject Formal languages es_ES
dc.subject Automata theory es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Formations of monoids, congruences, and formal languages es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.7561/SACS.2015.2.171
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-19938-C03-01/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE LOS GRUPOS. APLICACIONES I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-54707-C3-1-P/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE GRUPOS Y SEMIGRUPOS I/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//11271085/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ME//AP2010-2764/ES/AP2010-2764/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Ballester Bolinches, A.; Cosme-Llópez, E.; Esteban Romero, R.; Rutten, J. (2015). Formations of monoids, congruences, and formal languages. Scientific Annals of Computer Science. 25(2):171-209. https://doi.org/10.7561/SACS.2015.2.171 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.7561/SACS.2015.2.171 es_ES
dc.description.upvformatpinicio 171 es_ES
dc.description.upvformatpfin 209 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 298492 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Ministerio de Educación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem