- -

Thermal-mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal-mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cerqueira Barros, Sandra es_ES
dc.contributor.author Alves da Silva, Ana es_ES
dc.contributor.author Barbosa Costa, Diana es_ES
dc.contributor.author Costa, Carlos M es_ES
dc.contributor.author Lanceros-Mendez, Senentxu es_ES
dc.contributor.author Tamano Maciavello, M.N. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Sentanin, Franciani es_ES
dc.contributor.author Pawlicka, Agnieszka es_ES
dc.contributor.author Silva, Maria Manuela es_ES
dc.date.accessioned 2016-06-02T08:42:21Z
dc.date.available 2016-06-02T08:42:21Z
dc.date.issued 2015-06
dc.identifier.issn 0969-0239
dc.identifier.uri http://hdl.handle.net/10251/65085
dc.description.abstract Hydrogels are high water content materials prepared by polymer crosslinking that are able to release active species, such as therapeutic, antibacterial, antiperspirant and moisturising agents, and fragrances. In recent years, several hydrogel systems have been reported based on both natural and synthetic polymers. Among the natural polymers, chitosan and cellulose-derivatives have been extensively studied, due to their stimuli responsive properties (pH and temperature sensitivity, respectively). In this work, we have developed physically crosslinked hydrogel films based on chitosan (CH) and (hydroxypropyl)methyl cellulose (HPMC). These films were prepared by two methodologies: solvent casting and freeze thaw techniques. The resulting membranes, were assessed in terms of thermal (DSC and TGA), mechanical (stress strain mechanical assays and DMA) and structural (X-ray) properties. The obtained results indicate that the developed CH:HPMC membranes show a good compatibility between the two component biopolymers. Additionally, these materials display an excellent thermal stability (having a T-Decomposition > 270 degrees C), good mechanical properties (especially for the compositions with similar contents of both polymers), a glass transition temperature (T-g) higher than 194 degrees C and predominate amorphous character. The described characteristics turn the designed CH:HPMC membranes suitable candidates as active species carriers, for the envisaged textile application. es_ES
dc.description.sponsorship The authors are thankful to the Chemistry and Physic Centres at Minho University (Pest-C/QUI/UI0686/2013 and PEST-C/FIS/UI607/2013), CNPq, FAPESP and CAPES for the financial support of this research. Sandra Cerqueira Barros and Carlos M. Costa acknowledge the Portuguese Foundation for Science and Technology for the Post-Doc and Ph.D. grants provided (SFRH/BPD/85399/2012 and SFRH/BD/68499/2010) and M. M. Silva acknowledges to CNPq, for the mobility grant provided by this institution. The authors of this paper are grateful to the Company Devan-Micropolis, S.A., for the material support, namely the natural polymers chitosan (CH) and (hydroxypropyl)methyl cellulose (HPMC) employed in this study. en_EN
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Cellulose es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chitosan es_ES
dc.subject (Hydroxypropyl)methyl cellulose es_ES
dc.subject Thermal analysis es_ES
dc.subject Rheological studies es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Thermal-mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10570-015-0603-5
dc.relation.projectID info:eu-repo/grantAgreement/Uminho//Pest-C/QUI/UI0686/2013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/COMPETE/132974/PT/Strategic Project - UI 607 - 2013-2014/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/Uminho//PEST-C/FIS/UI607/2013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/COMPETE/132953/PT/Strategic Project - UI 686 - 2013-2014/
dc.relation.projectID info:eu-repo/grantAgreement/FCT//SFRH/BPD/85399/2012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BPD/85399/2012/PT/
dc.relation.projectID info:eu-repo/grantAgreement/FCT//SFRH/BD/68499/2010/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BD/68499/2010/PT/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Cerqueira Barros, S.; Alves Da Silva, A.; Barbosa Costa, D.; Costa, CM.; Lanceros-Mendez, S.; Tamano Maciavello, M.; Gómez Ribelles, JL.... (2015). Thermal-mechanical behaviour of chitosan-cellulose derivative thermoreversible hydrogel films. Cellulose. 22(3):1911-1929. https://doi.org/10.1007/s10570-015-0603-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10570-015-0603-5 es_ES
dc.description.upvformatpinicio 1911 es_ES
dc.description.upvformatpfin 1929 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 299925 es_ES
dc.identifier.eissn 1572-882X
dc.contributor.funder Universidade do Minho
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil
dc.description.references Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65:1148–1171. doi: 10.1016/j.addr.2013.04.016 es_ES
dc.description.references Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657. doi: 10.1016/0142-9612(96)87644-7 es_ES
dc.description.references Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN (2007) Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique. J Pharm Biomed Anal 43:549–557. doi: 10.1016/j.jpba.2006.08.014 es_ES
dc.description.references Barreiro-Iglesias R, Coronilla R, Concheiro A, Alvarez-Lorenzo C (2005) Preparation of chitosan beads by simultaneous cross-linking/insolubilization in basic pH: rheological optimisation and drug loading/release behaviour. Eur J Pharm Sci 24:77–84. doi: 10.1016/j.ejps.2004.09.013 es_ES
dc.description.references Barros SC et al (2014) Thermo-sensitive chitosan–cellulose hydrogels: swelling behaviour and morphologic studies. Cellulose 21:4531–4544. doi: 10.1007/s10570-014-0442-9 es_ES
dc.description.references Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99. doi: 10.1016/j.addr.2009.07.019 es_ES
dc.description.references Cervera MF et al (2004) Solid-state characterization of chitosans derived from lobster chitin. Carbohydr Polym 58:401–408. doi: 10.1016/j.carbpol.2004.08.017 es_ES
dc.description.references Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53. doi: 10.1016/j.carbpol.2010.12.023 es_ES
dc.description.references Chen L, Tang C-y, Ning N-y, Wang C-y, Fu Q, Zhang Q (2009) Preparation and properties of chitosan/lignin composite films. Chin J Polym Sci 27:739–746. doi: 10.1142/S0256767909004448 es_ES
dc.description.references Cursaru B, Stanescu PO, Teodorescu M (2010) The states of water in hydrogels synthesized from diepoxy-terminated poly/ethylene glycol)s and aliphatic polyamines. UPB Sci Bull, Series B 72:99–114 es_ES
dc.description.references De Lima MSP, Freire MS, Fonseca JLC, Pereira MR (2009) Chitosan membranes modified by contact with poly(acrylic acid). Carbohydr Res 344:1709–1715. doi: 10.1016/j.carres.2009.05.024 es_ES
dc.description.references Dhawade PP, Jagtap RN (2012) Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv Appl Sci Res 3:1372–1382 es_ES
dc.description.references Dong Y, Ruan Y, Wang H, Zhao Y, Bi D (2004) Studies on glass transition temperature of chitosan with four techniques. J Appl Polym Sci 93:1553–1558. doi: 10.1002/app.20630 es_ES
dc.description.references Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351. doi: 10.1016/S0142-9612(03)00340-5 es_ES
dc.description.references El-Hefian EA, Elgannoudi ES, Mainal A, Yahaya AH (2010) Characterization of chitosan in acetic acid: rheological and thermal studies. Turk J Chem 34:47–56. doi: 10.3906/kim-0901-38 es_ES
dc.description.references Ford JL (1999) Thermal analysis of hydroxypropylmethylcellulose and methylcellulose: powders, gels and matrix tablets. Int J Pharm 179:209–228. doi: 10.1016/S0378-5173(98)00339-1 es_ES
dc.description.references Francis Suh JK, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598. doi: 10.1016/S0142-9612(00)00126-5 es_ES
dc.description.references Guinesi LS, Cavalheiro ÉTG (2006) The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim Acta 444:128–133. doi: 10.1016/j.tca.2006.03.003 es_ES
dc.description.references Gulrez SKH, Al-Assaf S, O Phillips G (2011) Hydrogels: methods of preparation, characterisation and applications. Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications. InTech. doi: 10.5772/24553 es_ES
dc.description.references Hino T, Ford JL (2001) Characterization of the hydroxypropylmethylcellulose–nicotinamide binary system. Int J Pharm 219:39–49. doi: 10.1016/S0378-5173(01)00619-6 es_ES
dc.description.references Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007. doi: 10.1016/j.polymer.2008.01.027 es_ES
dc.description.references Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12. doi: 10.1016/S0169-409X(01)00239-3 es_ES
dc.description.references Hussain S, Grandy DB, Reading M, Craig DQM (2004) A study of phase separation in peptide-loaded HPMC films using Tzero-modulated temperature DSC, atomic force microscopy, and scanning electron microscopy. J Pharm Sci 93:1672–1681. doi: 10.1002/jps.20066 es_ES
dc.description.references Jiang H, Su W, Caracci S, Bunning TJ, Cooper T, Adams WW (1996) Optical waveguiding and morphology of chitosan thin films. J Appl Polym Sci 61:1163–1171. doi: 10.1002/(sici)1097-4628(19960815)61:7<1163:aid-app12>3.0.co;2-z es_ES
dc.description.references Jocic D (2008) Smart textile materials by surface modification with biopolymeric systems. RJTA 12:58–65 es_ES
dc.description.references Joshi HN, Wilson TD (1993) Calorimetric studies of dissolution of hydroxypropyl methylcellulose E5 (HPMC E5) in water. J Pharm Sci 82:1033–1038. doi: 10.1002/jps.2600821011 es_ES
dc.description.references Kim SS, Kim SJ, Moon YD, Lee YM (1994) Thermal characteristics of chitin and hydroxypropyl chitin. Polymer 35:3212–3216. doi: 10.1016/0032-3861(94)90124-4 es_ES
dc.description.references Kittur FS, Harish Prashanth KV, Udaya Sankar K, Tharanathan RN (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym 49:185–193. doi: 10.1016/S0144-8617(01)00320-4 es_ES
dc.description.references Kopeček J (2002) Polymer chemistry: swell gels. Nature 417:388 es_ES
dc.description.references Lazaridou A, Biliaderis CG (2002) Thermophysical properties of chitosan, chitosan–starch and chitosan–pullulan films near the glass transition. Carbohydr Polym 48:179–190. doi: 10.1016/S0144-8617(01)00261-2 es_ES
dc.description.references Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880. doi: 10.1021/cr000108x es_ES
dc.description.references Loh GOK, Tan YTF, Peh KK (2014) Effect of HPMC concentration on β-cyclodextrin solubilization of norfloxacin. Carbohydr Polym 101:505–510. doi: 10.1016/j.carbpol.2013.09.084 es_ES
dc.description.references McCrystal CB, Ford JL, Rajabi-Siahboomi AR (1999) Water distribution studies within cellulose ethers using differential scanning calorimetry. 2. Effect of polymer substitution type and drug addition. J Pharm Sci 88:797–801. doi: 10.1021/js9804260 es_ES
dc.description.references McPhillips H, Craig DQM, Royall PG, Hill VL (1999) Characterisation of the glass transition of HPMC using modulated temperature differential scanning calorimetry. Int J Pharm 180:83–90. doi: 10.1016/S0378-5173(98)00407-4 es_ES
dc.description.references Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62:97–103. doi: 10.1016/j.carbpol.2005.02.022 es_ES
dc.description.references OriginLab Corporation (2010) OriginPro 8.5.0 SR1. Northampton, MA, USA es_ES
dc.description.references Pal K, Banthia AK, Majumdar D (2009) Polymeric hydrogels: characterization and biomedical applications—a mini review. Des Monomers Polym 12:197–220. doi: 10.1163/156855509X436030 es_ES
dc.description.references Parida UK, Nayak AK, Binhani BK, Nayak PL (2011) Synthesis and characterization of chitosan–polyvinyl alcohol blended with cloisite 30B for controlled release of the anticancer drug curcumin. J Biomater Nanobiotechnol 2:414–425. doi: 10.4236/jbnb.2011.24051 es_ES
dc.description.references Pasqui D, De Cagna M, Barbucci R (2012) Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers 4:1517–1534. doi: 10.3390/polym4031517 es_ES
dc.description.references Patel A, Mequanint K (2011) Hydrogel biomaterials. Biomedical engineering—frontiers and challenges. InTech, Morn Hill. doi: 10.5772/24856 es_ES
dc.description.references Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396:153–166. doi: 10.1016/S0040-6031(02)00523-3 es_ES
dc.description.references Qu X, Wirsén A, Albertsson AC (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer 41:4589–4598. doi: 10.1016/S0032-3861(99)00685-0 es_ES
dc.description.references Ratto J, Hatakeyama T, Blumstein RB (1995) Differential scanning calorimetry investigation of phase transitions in water/chitosan systems. Polymer 36:2915–2919. doi: 10.1016/0032-3861(95)94340-Y es_ES
dc.description.references Robinson JW, Frame EMS, Frame II GM (2005) Undergraduate instrumental analysis. In: Dekker M (ed) 6th edn. Taylor & Francis e-Library, New York es_ES
dc.description.references Rotta J (2008) Propriedades físico-químicas de soluções formadoras e de filmes de quitosana e hidroxipropilmetilcelulose (Master Thesis). Universidade Federal de Santa Catarina, Florianópolis, Brazil es_ES
dc.description.references Rotta J, Minatti E, Barreto PLM (2011) Determination of structural and mechanical properties, diffractometry, and thermal analysis of chitosan and hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol. SBCTA. doi: 10.1590/s0101-20612011000200026 es_ES
dc.description.references Roy I, Gupta MN (2003) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161–1171. doi: 10.1016/j.chembiol.2003.12.004 es_ES
dc.description.references Ruel-Gariépy E, Leroux J-C (2004) In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426. doi: 10.1016/j.ejpb.2004.03.019 es_ES
dc.description.references Ruiz-Caro R, Veiga-Ochoa MD (2009) Characterization and dissolution study of chitosan freeze–dried systems for drug controlled release. Molecules 14:4370–4386. doi: 10.3390/molecules14114370 es_ES
dc.description.references Sakurai K, Maegawa T, Takahashi T (2000) Glass transition temperature of chitosan and miscibility of chitosan/poly (N-vinyl pyrrolidone) blends. Polymer 41:7051–7056. doi: 10.1016/S0032-3861(00)00067-7 es_ES
dc.description.references Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373. doi: 10.3390/ma2020353 es_ES
dc.description.references Sarkar N (1979) Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci 24:1073–1087. doi: 10.1002/app.1979.070240420 es_ES
dc.description.references Schubnell M, Schawe JEK (2001) Quantitative determination of the specific heat and the glass transition of moist samples by temperature modulated differential scanning calorimetry. Int J Pharm 217:173–181. doi: 10.1016/S0378-5173(01)00601-9 es_ES
dc.description.references Slama SB, Hajji M, Ezzaouia H (2012) Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon. Nanoscale Res Lett 7:1–6. doi: 10.1186/1556-276x-7-464 es_ES
dc.description.references Solaiman A (2010) Properties of capsule shells made from hydroxypropyl methylcellulose (hypromellose). Doctor of Philosophy, University of Sunderland, UK es_ES
dc.description.references Synytsya A et al (2009) pH-controlled self-assembling of meso-tetrakis(4-sulfonatophenyl)porphyrin–chitosan complexes. Biomacromolecules 10:1067–1076. doi: 10.1021/bm8011715 es_ES
dc.description.references Tranoudis I, Efron N (2004) Water properties of soft contact lens materials. Contact Lens Anterior Eye 27:193–208. doi: 10.1016/j.clae.2004.08.003 es_ES
dc.description.references Tripathi S, Mehrotra GK, Dutta PK (2009) Physicochemical and bioactivity of cross-linked chitosan—PVA film for food packaging applications. Int J Biol Macromol 45:372–376. doi: 10.1016/j.ijbiomac.2009.07.006 es_ES
dc.description.references Wu Y-B, Yu S-H, Mi F-L, Wu C-W, Shyu S-S, Peng C-K, Chao A-C (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym 57:435–440. doi: 10.1016/j.carbpol.2004.05.013 es_ES
dc.description.references Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crops Prod 21:185–192. doi: 10.1016/j.indcrop.2004.03.002 es_ES
dc.description.references Yin J, Luo K, Chen X, Khutoryanskiy VV (2006) Miscibility studies of the blends of chitosan with some cellulose ethers. Carbohydr Polym 63:238–244. doi: 10.1016/j.carbpol.2005.08.041 es_ES
dc.description.references Zhang H, Zhang F, Wu J (2013) Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. React Funct Polym 73:923–928. doi: 10.1016/j.reactfunctpolym.2012.12.014 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem