- -

Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997-1998

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997-1998

Show simple item record

Files in this item

dc.contributor.author Sifres Cuerda, Alicia Gemma es_ES
dc.contributor.author Picó Sirvent, María Belén es_ES
dc.contributor.author Blanca Postigo, José Miguel es_ES
dc.contributor.author De Frutos, R. es_ES
dc.contributor.author Nuez Viñals, Fernando es_ES
dc.date.accessioned 2016-06-02T09:46:08Z
dc.date.available 2016-06-02T09:46:08Z
dc.date.issued 2007-03
dc.identifier.issn 0925-9864
dc.identifier.uri http://hdl.handle.net/10251/65094
dc.description.abstract The greatest extent of genetic variation and outcrossing for Lycopersicon pimpinellifolium occurs in northern Peru. This is also the area most affected by EI Nino Southern Oscillation (ENSO). Using morphological and the molecular markers SSRs and AFLPs, we studied the genetic structure of L. pimpinellifolium populations collected after the ENSO event of 1997-1998. This was the most intense in the last century and caused a vast increase in the size of L. pimpinellifolium populations. Populations in the area surveyed were not regionally differentiated. We did not find any cline or eco-geographic association for genetic diversity, and positive correlations between genetic and geographic distances were found only at very short distances. Flooding and water streams caused by ENSO might have facilitated a periodical seed migration from distant areas. Gene flow between populations could then occur, facilitated by the increase in the population sizes of plants and pollinators and by the high levels of stigmatic exsertion. Results revealed a significant lack of heterozygotes in comparison with those expected in a panmictic population without consanguinity. A high degree of endogamy was found in all populations. In this context, endogamy can be explained by the occurrence of crosses between relatives rather than by autogamy. In an area intensely disturbed by ENSO, we found a population that had not been reported by earlier collectors in this region. This yellow-fruited population remained morphologically and molecularly differentiated from all L. pimpinellifolium and L. esculentum populations analyzed. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Genetic Resources and Crop Evolution es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AFLPs es_ES
dc.subject ENSO es_ES
dc.subject Genetic structure es_ES
dc.subject Lycopersicon pimpinellifolium es_ES
dc.subject Northern Peru es_ES
dc.subject SSRs es_ES
dc.subject.classification GENETICA es_ES
dc.title Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997-1998 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10722-005-5725-4
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Sifres Cuerda, AG.; Picó Sirvent, MB.; Blanca Postigo, JM.; De Frutos, R.; Nuez Viñals, F. (2007). Genetic structure of Lycopersicon pimpinellifolium (Solanaceae) populations collected after the ENSO event of 1997-1998. Genetic Resources and Crop Evolution. 54(2):359-377. doi:10.1007/s10722-005-5725-4 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10722-005-5725-4 es_ES
dc.description.upvformatpinicio 359 es_ES
dc.description.upvformatpfin 377 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 32436 es_ES
dc.relation.references A.E. Alvarez, C.C.M. van de Wiel, M.J.M. Smulders and B. Vosman, Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor. Appl. Genet. 103 (2001) 1283-1292 es_ES
dc.relation.references T. Areshchenkova and M.W. Ganal, Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor. Appl. Genet. 104 (2002) 229-235 es_ES
dc.relation.references P. Arens, P. Odinot, A.W. van Exuden, P. Lindhout and B. Vosman, GATA- and GACA-repeats are not evenly distributed throughout the tomato genome. Genome 38 (1995) 84-90 es_ES
dc.relation.references E. Baudry, C. Kerdelhue, H. Innan and W. Stephan, Species and recombination effects on DNA variability in the tomato genus. Genetics 158 (2001) 1725-1735 es_ES
dc.relation.references K. Belkhir, P. Borsa, L. Chikhi, N. Ranfaste and T. Bonhomme, Genetix.4.04. Logiciel sous windowsTM pour la genetiqué des populations. Montpellier: Laboratoire GénomePopulations, Interactions, Université de Montpellier II (1996–2002). es_ES
dc.relation.references G. Bonnema, P. van der Berg and P. Lindhout, AFPLs mark different genomic regions compared with RFLPs: a case study in tomato. Genome 45 (2002) 217-221 es_ES
dc.relation.references G.M.M. Bredemeijer, R.J. Cooke, M.W. Ganal, R. Peeters, P. Isaac, Y. Noordijk, S. Rendell, J. Jackson, M. S. Röder, K. Wendehake, M. Dijcks, M. Amelaine, V. Wickaert, L. Bertrand and B. Vosman, Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor. Appl. Genet. 105 (2002) 1019-1026 es_ES
dc.relation.references P. Broun and S.D. Tanksley, Characterization and genetic mapping of single repeat sequences in the tomato genome. Mol. Gen. Genet. 250 (1996) 39-49 es_ES
dc.relation.references L.L. Cavalli-Sforza and A.W.F. Edwards, Phylogenetic analysis: models and estimation procedures. Evolution 32 (1967) 550-570 es_ES
dc.relation.references A.H. Del Rio and J.B. Bamberg, Lack of association between genetic and geographical origin characteristics for the wild potato Solanum sucrense. Amer. J. Potato Res. 79 (2002) 335-338 es_ES
dc.relation.references L.R. Dice, Measures of the amount of ecologic association between species. Ecology 26 (1945) 297-302 es_ES
dc.relation.references R.A. Ennos, Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72 (1994) 250-259 es_ES
dc.relation.references B. Escofier and J. Pagés, Analyses factorielles simples et multiples. Paris: Dumond (1990). es_ES
dc.relation.references M. Ferriol, B. Picó and F. Nuez, Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet. 107 (2003) 271-282 es_ES
dc.relation.references L. Galiana-Balaguer, S. Roselló, J.M. Herrero-Martínez, A. Maqueira and F. Nuez, Determination of L-ascorbic acid in Lycopersicon fruits by capillary zone electrophoresis. Anal. Biochem. 296 (2001) 218-224 es_ES
dc.relation.references M.S. Georgiady, R.M. Whitkus and E.M. Lord, Genetic analysis of traits distinguishing outcrossing and self- pollinating forms of currant tomatoLycopersicon pimpinellifolium (Juss.) Mill. Genetics 161 (2002) 333-344 es_ES
dc.relation.references J.P.W. Haanstra, C. Wye, H. Verbakel, F. Meijer-Dekens, P. Berg Van den, P. Odinot, A.W. Van Exuden, S. Tanksley, P. Lindhout and J. Peleman, An integrated high-density RFLP–AFLP map of tomato based on two Lycopersicon esculentum×L. pennellii F2 populations. Theor. Appl. Genet. 99 (1999) 254-271 es_ES
dc.relation.references C. He, V. Poysa and K. Yu, Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationship among Lycopersicon esculentum cultivars. Theor. Appl. Genet. 106 (2003) 363-373 es_ES
dc.relation.references M. Holle, C.M. Rick and D.G. Hunt, Catalog of collections of green-fruited Lycopersicon species and Solanum pennellii found in watersheds of Peru. TGC Report 28 (1978) 50-78 es_ES
dc.relation.references Descriptors for tomato (Lycopersicon). Rome: International Plant Genetic Resources Institute (1996). es_ES
dc.relation.references S. Jaramillo and M. Baena, Material de apoyo a la capacitación en conservación ex situ de recursos fitogenéticos. Cali: Instituto Internacional de Recursos Fitogenéticos (2000). es_ES
dc.relation.references N. Mantel, The detection of disease clustering and a generalized regression approach. Cancer Res. 27 (1967) 209-220 es_ES
dc.relation.references J.A. Marshall, S. Knapp, M.R. Davey, J.B. Power, E.C. Cocking, M.D. Bennett and A.V. Cox, Molecular systematics of Solanum section Lycopersicon (Lycopersicon) using the nuclear ITS rDNA region. Theor. Appl. Genet. 103 (2001) 1216-1222 es_ES
dc.relation.references Matthiolus P.A. 1544. Di Pedacio Dioscoride Anarzabeo libri cinque della historia et material medicinale trodotte in lingua volgare Italiana. Venice. es_ES
dc.relation.references C.E. McGregor, R. Treuren van, R. Hoekstra and T.J.L. van Hintum, Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor. Appl. Genet. 104 (2002) 146-156 es_ES
dc.relation.references J.C. Miller and S.D. Tanksley, RFLP analysis of phylogenetic relationships and genetics variation in the genus Lycopersicon. Theor. Appl. Genet. 80 (1990) 437-448 es_ES
dc.relation.references C. H. Muller, A revision of the genus Lycopersicon. USDA Misc. Publication 382 (1940) 29 es_ES
dc.relation.references M. Nei, Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA 70 (1973) 3321-3323 es_ES
dc.relation.references M. Nei, F-statistic and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 41 (1977) 225-233 es_ES
dc.relation.references F. Nuez, J. Prohens and J.M. Blanca, Relationships, origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. Am. J. Bot. 91 (2004) 86-99 es_ES
dc.relation.references C.M. Rick and R.T. Chetelat, Utilization of related wild species for tomato improvement. Acta Hortic. 412 (1995) 21-38 es_ES
dc.relation.references C.M. Rick and M. Holle, Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ. Bot. 44 (1990) 69-78 es_ES
dc.relation.references C.M. Rick, J.F. Fobes and M. Holle, Genetic variation in Lycopersicon pimpinellifolium. Evidence of evolutionary change in mating systems. Plant Syst. Evol. 127 (1977) 139-170 es_ES
dc.relation.references C.M. Rick, M. Holle and R.W. Thorp, Rates of cross-pollination in Lycopersicon pimpinellifolium: Impact of genetic variation in floral characters. Plant Syst. Evol 129 (1978) 31-44 es_ES
dc.relation.references C.M. Rick, H. Laterrot and J. Philouze, A revised key for the Lycopersicon species. TGC Report 40 (1990) 31 es_ES
dc.relation.references F.J. Rohlf, NTSYS-pc: numerical taxonomy and multivariate analysis systemversion 2.0, user guide. New York: Exeter Software (1998). es_ES
dc.relation.references V. Saliba-Colombani, M. Causse, L. Gervais and J. Philouze, Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43 (2000) 29-40 es_ES
dc.relation.references P.E. Smouse and R. Peakall, Spatial autocorrelation analysis of the individual multiallele and multilocus genetic structure. Heredity 82 (1999) 561-573 es_ES
dc.relation.references M.J.M. Smulders, G. Bredemeijer, W. Rus-Kortekaas, P. Arens and B. Vosman, Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor. Appl. Genet. 97 (1997) 264-272 es_ES
dc.relation.references D.M. Spooner, I.E. Peralta and S. Knapp, Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. Taxon 54 (2005) 43-61 es_ES
dc.relation.references N. Takezaki and M. Nei, Genetic distances and reconstruction of phylogenetics trees from microsatellites DNA. Genetics 144 (1996) 389-399 es_ES
dc.relation.references I.B. Taylor, Biosystematics of the tomato. In: J.G. Atherton and J. Ridich (eds.) The Tomato Crop. A Scientific Basis for Improvement. London and New York: Chapman and Hall (1986) pp. 1-34 es_ES
dc.relation.references Guidelines for the conduct of tests for distinctness, homogeneity and stability. Tomato (Lycopersicon lycopersicum (L.) Karst. ex Farw.). Geneva: UPOV (1976). es_ES
dc.relation.references J. Villand, P.W. Skroch, T. Lai, P. Hanson, C.G. Kuo and J. Nienhuis, Genetic variation among tomato accessions from primary and secondary centres of diversity. Crop Sci. 38 (1998) 1339-1347 es_ES
dc.relation.references S.J. Warnock, Natural habitats of Lycopersicon species. HortScience 26 (1991) 446-471 es_ES
dc.relation.references B.S. Weir and C.C. Cockerham, Estimating F-statistics for the analysis of population structure. Evolution 38 (1984) 1358-1370 es_ES
dc.relation.references M.P. Widrlechner, Variation in the breeding system of Lycopersicon pimpinellifolium: implication for germplasm maintenance. Plant Gen. Res. Newsl. 70 (1987) 38-43 es_ES
dc.relation.references C.E. Williams and D.A. St Clair, Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of L. esculentum. Genome 36 (1993) 619-630 es_ES
dc.relation.references The 1997–98 El Niño: a scientific and technical retrospective. Geneva: WMO No. 905 (1999). es_ES
dc.relation.references F.C. Yeh, R.C. Yang, T.B.J. Boyle, Z.H. Ye and J.X. Mao, POPGENEthe user-friendly shareware for population genetic analysis. Alberta: Molecular Biology and Biotechnology CentreUniversity of Alberta (1997). es_ES


This item appears in the following Collection(s)

Show simple item record