- -

Suitability Evaluation of Multipoint Simultaneous CO2 Sampling Wireless Sensors for Livestock Buildings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Suitability Evaluation of Multipoint Simultaneous CO2 Sampling Wireless Sensors for Livestock Buildings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calvet Sanz, Salvador es_ES
dc.contributor.author Campelo Rivadulla, José Carlos es_ES
dc.contributor.author Estellés, F. es_ES
dc.contributor.author Perles Ivars, Angel es_ES
dc.contributor.author Mercado Romero, Ricardo es_ES
dc.contributor.author Serrano Martín, Juan José es_ES
dc.date.accessioned 2016-06-02T10:31:34Z
dc.date.available 2016-06-02T10:31:34Z
dc.date.issued 2014-06
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/65108
dc.description.abstract [EN] The environment in livestock buildings must be controlled to ensure the health and welfare of both workers and animals, as well as to restrict the emission of pollutants to the atmosphere. Among the pollutants generated inside these premises, carbon dioxide (CO2) is of great interest in terms of animal welfare and ventilation control. The use of inexpensive sensors means that complete systems can be designed with a number of sensors located around the building. This paper describes a study of the suitability of multipoint simultaneous CO2 sensors operating in a wireless sensor network, which was found to operate satisfactorily under laboratory conditions and was found to be the best alternative for these applications. The sensors showed a highly linear response to CO2 concentrations, ranging from 500 to 5000 ppm. However, individual sensor response was found to differ, which made it necessary to calibrate each one separately. Sensor precision ranged between 80 and 110 ppm CO2, and sensor response to register a 95% change in concentration was estimated at around 5 min. These features mean this type of sensor network can be used to monitor animal welfare and also for environmental control in poorly ventilated livestock premises. According to the tests conducted in this study, a temporal drift may occur and therefore a regular calibration of sensors would be needed. es_ES
dc.description.sponsorship This project was supported by the Vicerrectorado de Investigacion of the UPV (Programa de Apoyo a la Investigacion y Desarrollo, PAID-06-11 Program, Project No. 2843) and the Spanish Government under Projects CTM2011-29691-C02-01 and TIN2011-28435-C03-0. The translation of this paper was funded by the Universitat Politecnica de Valencia, Valencia, Spain. en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Carbon dioxide es_ES
dc.subject Livestock es_ES
dc.subject Ventilation es_ES
dc.subject Wireless sensor network es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Suitability Evaluation of Multipoint Simultaneous CO2 Sampling Wireless Sensors for Livestock Buildings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s140610479
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-2843/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2011-29691-C02-01/ES/SENSORIZACION AMBIENTAL SUBACUATICA PARA LA INSPECCION Y MONITORIZACION DE EXPLOTACIONES DE ACUICULTURA MARINA/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2011-28435-C03-01/ES/INVESTIGACION EN LA MEJORA DE LA CONFIABILIDAD DE APLICACIONES BASADAS EN WSN MEDIANTE EL DESARROLLO DE UNA PLATAFORMA HIBRIDA DE MONITORIZACION/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Calvet Sanz, S.; Campelo Rivadulla, JC.; Estellés, F.; Perles Ivars, A.; Mercado Romero, R.; Serrano Martín, JJ. (2014). Suitability Evaluation of Multipoint Simultaneous CO2 Sampling Wireless Sensors for Livestock Buildings. Sensors. 14(6):10479-10496. https://doi.org/10.3390/s140610479 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.3390/s140610479 es_ES
dc.description.upvformatpinicio 10479 es_ES
dc.description.upvformatpfin 10496 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 268563 es_ES
dc.identifier.pmid 24932867 en_EN
dc.identifier.pmcid PMC4118403 en_EN
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references C. M. Wathes, J. B. Jones, H. H. Kristensen, E. K. M. Jones, & A. J. F. Webster. (2002). AVERSION OF PIGS AND DOMESTIC FOWL TO ATMOSPHERIC AMMONIA. Transactions of the ASAE, 45(5). doi:10.13031/2013.11067 es_ES
dc.description.references Homidan, A. A., Robertson, J. F., & Petchey, A. M. (2003). Review of the effect of ammonia and dust concentrations on broiler performance. World’s Poultry Science Journal, 59(3), 340-349. doi:10.1079/wps20030021 es_ES
dc.description.references Krupa, S. . (2003). Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution, 124(2), 179-221. doi:10.1016/s0269-7491(02)00434-7 es_ES
dc.description.references Kaye, J., Buchanan, F., Kendrick, A., Johnson, P., Lowry, C., Bailey, J., … Lightman, S. (2004). Acute Carbon Dioxide Exposure in Healthy Adults: Evaluation of a Novel Means of Investigating the Stress Response. Journal of Neuroendocrinology, 16(3), 256-264. doi:10.1111/j.0953-8194.2004.01158.x es_ES
dc.description.references Ni, J.-Q., & Heber, A. J. (2008). Sampling and Measurement of Ammonia at Animal Facilities. Advances in Agronomy, 201-269. doi:10.1016/s0065-2113(08)00204-6 es_ES
dc.description.references Ogink, N. W. M., Mosquera, J., Calvet, S., & Zhang, G. (2013). Methods for measuring gas emissions from naturally ventilated livestock buildings: Developments over the last decade and perspectives for improvement. Biosystems Engineering, 116(3), 297-308. doi:10.1016/j.biosystemseng.2012.10.005 es_ES
dc.description.references Calvet, S., Gates, R. S., Zhang, G., Estellés, F., Ogink, N. W. M., Pedersen, S., & Berckmans, D. (2013). Measuring gas emissions from livestock buildings: A review on uncertainty analysis and error sources. Biosystems Engineering, 116(3), 221-231. doi:10.1016/j.biosystemseng.2012.11.004 es_ES
dc.description.references Phillips, V. R., Holden, M. R., Sneath, R. W., Short, J. L., White, R. P., Hartung, J., … Wathes, C. M. (1998). The Development of Robust Methods for Measuring Concentrations and Emission Rates of Gaseous and Particulate Air Pollutants in Livestock Buildings. Journal of Agricultural Engineering Research, 70(1), 11-24. doi:10.1006/jaer.1997.0283 es_ES
dc.description.references Calvet, S., Cambra-López, M., Estellés, F., & Torres, A. G. (2011). Characterization of gas emissions from a Mediterranean broiler farm. Poultry Science, 90(3), 534-542. doi:10.3382/ps.2010-01037 es_ES
dc.description.references Calvet, S., Cambra-López, M., Estellés Barber, F., & Torres, A. G. (2011). Characterization of the indoor environment and gas emissions in rabbit farms. World Rabbit Science, 19(1). doi:10.4995/wrs.2011.802 es_ES
dc.description.references Wathes, C. M., Holden, M. R., Sneath, R. W., White, R. P., & Phillips, V. R. (1997). Concentrations and emission rates of aerial ammonia, nitrous oxide, methane, carbon dioxide, dust and endotoxin in UK broiler and layer houses. British Poultry Science, 38(1), 14-28. doi:10.1080/00071669708417936 es_ES
dc.description.references Pedersen, S., Takai, H., Johnsen, J. O., Metz, J. H. M., Groot Koerkamp, P. W. G., Uenk, G. H., … Wathes, C. M. (1998). A Comparison of Three Balance Methods for Calculating Ventilation Rates in Livestock Buildings. Journal of Agricultural Engineering Research, 70(1), 25-37. doi:10.1006/jaer.1997.0276 es_ES
dc.description.references Yasuda, T., Yonemura, S., & Tani, A. (2012). Comparison of the Characteristics of Small Commercial NDIR CO2 Sensor Models and Development of a Portable CO2 Measurement Device. Sensors, 12(3), 3641-3655. doi:10.3390/s120303641 es_ES
dc.description.references Low-Power SoC (System-on-Chip) with MCU, Memory, Sub-1 GHz RF Transceiver, and USB Controllerwww.ti.com/product/cc1110f32 es_ES
dc.description.references Sensirion. SHT11: Digital Humidity Sensor (RH&T)http://www.sensirion.com/en/products/humidity-temperature/humidity-sensor-sht11/ es_ES
dc.description.references Bjerg, B., Zhang, G., Madsen, J., & Rom, H. B. (2011). Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements. Environmental Monitoring and Assessment, 184(10), 5989-6000. doi:10.1007/s10661-011-2397-8 es_ES
dc.description.references Kaasik, A., & Maasikmets, M. (2013). Concentrations of airborne particulate matter, ammonia and carbon dioxide in large scale uninsulated loose housing cowsheds in Estonia. Biosystems Engineering, 114(3), 223-231. doi:10.1016/j.biosystemseng.2013.01.002 es_ES
dc.description.references Hodgkinson, J., Smith, R., Ho, W. O., Saffell, J. R., & Tatam, R. P. (2013). Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor. Sensors and Actuators B: Chemical, 186, 580-588. doi:10.1016/j.snb.2013.06.006 es_ES
dc.description.references Zosel, J., Oelßner, W., Decker, M., Gerlach, G., & Guth, U. (2011). The measurement of dissolved and gaseous carbon dioxide concentration. Measurement Science and Technology, 22(7), 072001. doi:10.1088/0957-0233/22/7/072001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem