- -

Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water-ethanol mixture

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water-ethanol mixture

Show full item record

Frindy, S.; Primo Arnau, AM.; Lahcini, M.; Bousmina, M.; García Gómez, H.; El Kadib, A. (2015). Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water-ethanol mixture. Green Chemistry. 17(3):1893-1898. doi:10.1039/c4gc02175d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65207

Files in this item

Item Metadata

Title: Pd embedded in chitosan microspheres as tunable soft-materials for Sonogashira cross-coupling in water-ethanol mixture
Author: Frindy, Sana Primo Arnau, Ana María Lahcini, Mohamed Bousmina, Mosto García Gómez, Hermenegildo El Kadib, Abdelkrim
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
Easy shaping of chitosan (CS) as porous self-standing nanofibrillar microspheres allows their use as a palladium carrier. Amino-groups on CS enable the modulation of Pd coordination, giving rise to three different ...[+]
Subjects: HETEROGENEOUS CATALYST , MESOPOROUS SILICA , BOND FORMATION , MIZOROKI-HECK , PALLADIUM , EFFICIENT , ORGANOCATALYST , ORGANOSILICA , COMPLEXES , CHEMISTRY
Copyrigths: Reserva de todos los derechos
Source:
Green Chemistry. (issn: 1463-9262 ) (eissn: 1463-9270 )
DOI: 10.1039/c4gc02175d
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c4gc02175d
Type: Artículo

References

Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J., & Snieckus, V. (2012). Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angewandte Chemie International Edition, 51(21), 5062-5085. doi:10.1002/anie.201107017

Sehnal, P., Taylor, R. J. K., & Fairlamb, I. J. S. (2010). Emergence of Palladium(IV) Chemistry in Synthesis and Catalysis. Chemical Reviews, 110(2), 824-889. doi:10.1021/cr9003242

Torborg, C., & Beller, M. (2009). Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Advanced Synthesis & Catalysis, 351(18), 3027-3043. doi:10.1002/adsc.200900587 [+]
Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J., & Snieckus, V. (2012). Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. Angewandte Chemie International Edition, 51(21), 5062-5085. doi:10.1002/anie.201107017

Sehnal, P., Taylor, R. J. K., & Fairlamb, I. J. S. (2010). Emergence of Palladium(IV) Chemistry in Synthesis and Catalysis. Chemical Reviews, 110(2), 824-889. doi:10.1021/cr9003242

Torborg, C., & Beller, M. (2009). Recent Applications of Palladium-Catalyzed Coupling Reactions in the Pharmaceutical, Agrochemical, and Fine Chemical Industries. Advanced Synthesis & Catalysis, 351(18), 3027-3043. doi:10.1002/adsc.200900587

Hartwig, J. F. (2008). Carbon–heteroatom bond formation catalysed by organometallic complexes. Nature, 455(7211), 314-322. doi:10.1038/nature07369

Loska, R., Volla, C. M. R., & Vogel, P. (2008). Iron-Catalyzed Mizoroki-Heck Cross-Coupling Reaction with Styrenes. Advanced Synthesis & Catalysis, 350(18), 2859-2864. doi:10.1002/adsc.200800662

Sun, C.-L., Li, B.-J., & Shi, Z.-J. (2011). Direct C−H Transformation via Iron Catalysis. Chemical Reviews, 111(3), 1293-1314. doi:10.1021/cr100198w

Czaplik, W. M., Mayer, M., Cvengroš, J., & von Wangelin, A. J. (2009). Coming of Age: Sustainable Iron-Catalyzed Cross-Coupling Reactions. ChemSusChem, 2(5), 396-417. doi:10.1002/cssc.200900055

Fürstner, A., Leitner, A., Méndez, M., & Krause, H. (2002). Iron-Catalyzed Cross-Coupling Reactions. Journal of the American Chemical Society, 124(46), 13856-13863. doi:10.1021/ja027190t

Barluenga, J., & Valdés, C. (2011). Tosylhydrazones: New Uses for Classic Reagents in Palladium-Catalyzed Cross-Coupling and Metal-Free Reactions. Angewandte Chemie International Edition, 50(33), 7486-7500. doi:10.1002/anie.201007961

Yin, & Liebscher, J. (2007). Carbon−Carbon Coupling Reactions Catalyzed by Heterogeneous Palladium Catalysts. Chemical Reviews, 107(1), 133-173. doi:10.1021/cr0505674

Phan, N. T. S., Van Der Sluys, M., & Jones, C. W. (2006). On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review. Advanced Synthesis & Catalysis, 348(6), 609-679. doi:10.1002/adsc.200505473

Weck, M., & Jones, C. W. (2007). Mizoroki−Heck Coupling Using Immobilized Molecular Precatalysts:  Leaching Active Species from Pd Pincers, Entrapped Pd Salts, and Pd NHC Complexes. Inorganic Chemistry, 46(6), 1865-1875. doi:10.1021/ic061898h

WEBB, J., MACQUARRIE, S., MCELENEY, K., & CRUDDEN, C. (2007). Mesoporous silica-supported Pd catalysts: An investigation into structure, activity, leaching and heterogeneity. Journal of Catalysis, 252(1), 97-109. doi:10.1016/j.jcat.2007.09.007

Garrett, C. E., & Prasad, K. (2004). The Art of Meeting Palladium Specifications in Active Pharmaceutical Ingredients Produced by Pd-Catalyzed Reactions. Advanced Synthesis & Catalysis, 346(8), 889-900. doi:10.1002/adsc.200404071

Glasspoole, B. W., Webb, J. D., & Crudden, C. M. (2009). Catalysis with chemically modified mesoporous silicas: Stability of the mesostructure under Suzuki–Miyaura reaction conditions. Journal of Catalysis, 265(2), 148-154. doi:10.1016/j.jcat.2009.04.020

Modak, A., Mondal, J., & Bhaumik, A. (2012). Pd-grafted periodic mesoporous organosilica: an efficient heterogeneous catalyst for Hiyama and Sonogashira couplings, and cyanation reactions. Green Chemistry, 14(10), 2840. doi:10.1039/c2gc35820d

Macquarrie, D. J., & Hardy, J. J. E. (2005). Applications of Functionalized Chitosan in Catalysis†. Industrial & Engineering Chemistry Research, 44(23), 8499-8520. doi:10.1021/ie050007v

A. El Kadib , ChemSusChem20158217244

El Kadib, A., Primo, A., Molvinger, K., Bousmina, M., & Brunel, D. (2011). Nanosized Vanadium, Tungsten and Molybdenum Oxide Clusters Grown in Porous Chitosan Microspheres as Promising Hybrid Materials for Selective Alcohol Oxidation. Chemistry – A European Journal, 17(28), 7940-7946. doi:10.1002/chem.201003740

El Kadib, A., & Bousmina, M. (2012). Chitosan Bio-Based Organic-Inorganic Hybrid Aerogel Microspheres. Chemistry - A European Journal, 18(27), 8264-8277. doi:10.1002/chem.201104006

Kadib, A. E., Bousmina, M., & Brunel, D. (2014). Recent Progress in Chitosan Bio-Based Soft Nanomaterials. Journal of Nanoscience and Nanotechnology, 14(1), 308-331. doi:10.1166/jnn.2014.9012

Primo, A., & Quignard, F. (2010). Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon–carbon bond formation. Chemical Communications, 46(30), 5593. doi:10.1039/c0cc01137a

Valentin, R., Molvinger, K., Quignard, F., & Brunel, D. (2003). Supercritical CO2 dried chitosan: an efficient intrinsic heterogeneous catalyst in fine chemistry. New Journal of Chemistry, 27(12), 1690. doi:10.1039/b310109f

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g

Ngah, W. S. W., Ab Ghani, S., & Kamari, A. (2005). Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96(4), 443-450. doi:10.1016/j.biortech.2004.05.022

El Hankari, S., El Kadib, A., Finiels, A., Bouhaouss, A., Moreau, J. J. E., Crudden, C. M., … Hesemann, P. (2011). SBA-15-Type Organosilica with 4-Mercapto-N,N-bis-(3-Si-propyl)butanamide for Palladium Scavenging and Cross-Coupling Catalysis. Chemistry - A European Journal, 17(32), 8984-8994. doi:10.1002/chem.201002190

Crudden, C. M., Sateesh, M., & Lewis, R. (2005). Mercaptopropyl-Modified Mesoporous Silica:  A Remarkable Support for the Preparation of a Reusable, Heterogeneous Palladium Catalyst for Coupling Reactions. Journal of the American Chemical Society, 127(28), 10045-10050. doi:10.1021/ja0430954

McEleney, K., Crudden, C. M., & Horton, J. H. (2009). X-ray Photoelectron Spectroscopy and the Auger Parameter As Tools for Characterization of Silica-Supported Pd Catalysts for the Suzuki−Miyaura Reaction. The Journal of Physical Chemistry C, 113(5), 1901-1907. doi:10.1021/jp808837k

Roy, A. S., Mondal, J., Banerjee, B., Mondal, P., Bhaumik, A., & Islam, S. M. (2014). Pd-grafted porous metal–organic framework material as an efficient and reusable heterogeneous catalyst for C–C coupling reactions in water. Applied Catalysis A: General, 469, 320-327. doi:10.1016/j.apcata.2013.10.017

Kadib, A. E., Molvinger, K., Cacciaguerra, T., Bousmina, M., & Brunel, D. (2011). Chitosan templated synthesis of porous metal oxide microspheres with filamentary nanostructures. Microporous and Mesoporous Materials, 142(1), 301-307. doi:10.1016/j.micromeso.2010.12.012

Kühbeck, D., Saidulu, G., Reddy, K. R., & Díaz, D. D. (2012). Critical assessment of the efficiency of chitosan biohydrogel beads as recyclable and heterogeneous organocatalyst for C–C bond formation. Green Chem., 14(2), 378-392. doi:10.1039/c1gc15925a

Khalafi-Nezhad, A., & Mohammadi, S. (2014). Chitosan supported ionic liquid: a recyclable wet and dry catalyst for the direct conversion of aldehydes into nitriles and amides under mild conditions. RSC Advances, 4(27), 13782. doi:10.1039/c3ra43440k

El Kadib, A., McEleney, K., Seki, T., Wood, T. K., & Crudden, C. M. (2011). Cross-Coupling in the Preparation of Pharmaceutically Relevant Substrates using Palladium Supported on Functionalized Mesoporous Silicas. ChemCatChem, 3(8), 1281-1285. doi:10.1002/cctc.201100021

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record