- -

A Survivability Clustering Algorithm for Ad Hoc Network Based on a Small-World Model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Survivability Clustering Algorithm for Ad Hoc Network Based on a Small-World Model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhang, Wenbo es_ES
dc.contributor.author Han, Guangjie es_ES
dc.contributor.author Feng, Yongxin es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Shu, Lei es_ES
dc.date.accessioned 2016-06-07T13:47:27Z
dc.date.available 2016-06-07T13:47:27Z
dc.date.issued 2015-10
dc.identifier.issn 0929-6212
dc.identifier.uri http://hdl.handle.net/10251/65454
dc.description.abstract In Ad hoc network, nodes have the characteristics of limited energy, self- organizing and multi-hop. For the purpose of improving the survivability of Ad hoc net- work effectively, this paper proposes a new algorithm named EMDWCA (Based on En- ergy, Mobility and Degrees of the nodes on-demand Weighted Clustering Algorithm). The LEACH algorithm is used to cluster the Ad hoc network in the first election, but the EMDWCA is used in the second election. By considering the appearances, disappearances, and communication link failures of the mobile nodes, this algorithm constructs the topology of Ad hoc network based on a small-world network model. To make sure that nodes can still communicate in the following election cycles, it improves the stability of the network topology and overall network invulnerability. The network is analyzed and simulation experiments are performed in order to compare the performance of this new clustering algorithm with the weighted clustering algorithm (WCA) in terms of the correctness, effectiveness, and invulnerability of the networks. The final result proves that the proposed algorithm provides better performance than the original WCA algorithm. es_ES
dc.description.sponsorship This paper is sponsored by Qing Lan Project, the New Century Program for Excellent Talents of the Ministry of Education of China, Liaoning province innovation group Project (LT2011005), and the Shenyang Ligong University Computer Science and Technology Key Discipline Open Foundation (2012, 2013). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Wireless Personal Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ad hoc network es_ES
dc.subject Small-world network model es_ES
dc.subject Survivability es_ES
dc.subject EMDWCA es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title A Survivability Clustering Algorithm for Ad Hoc Network Based on a Small-World Model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11277-015-2518-8
dc.relation.projectID info:eu-repo/grantAgreement/Liaoning Province Innovation Group Project//LT2011005/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Zhang, W.; Han, G.; Feng, Y.; Lloret, J.; Shu, L. (2015). A Survivability Clustering Algorithm for Ad Hoc Network Based on a Small-World Model. Wireless Personal Communications. 84(3):1835-1854. doi:10.1007/s11277-015-2518-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11277-015-2518-8 es_ES
dc.description.upvformatpinicio 1835 es_ES
dc.description.upvformatpfin 1854 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 84 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 310956 es_ES
dc.identifier.eissn 1572-834X
dc.contributor.funder Liaoning Province Innovation Group Project es_ES
dc.contributor.funder Program for New Century Excellent Talents in University, China es_ES
dc.contributor.funder Shenyang Ligong University es_ES
dc.description.references Qing, D. (2013). A new self-adapt clustering algorithm for Ad hoc. Information & Communications, 9, 8–79. es_ES
dc.description.references Anastasi, G., Conti, M., & Di Francesco, M. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7, 537–568. es_ES
dc.description.references Wu, G., Wang, S., Wang, B., et al. (2012). A novel range-free localization based on regulated neighborhood distance for wireless Ad hoc and sensor networks. Computer Networks, 56, 3581–3593. es_ES
dc.description.references Weifeng, C., & Yuping, L. (2010). An improved clustering algorithm for Ad hoc network. Software Guid, 10, 66–68. es_ES
dc.description.references Chen, A., Zhang, L., Xia, X., et al. (2012). Study on energy-heterogeneous clustering algorithm in wireless sensor network. Information System and Network, 1(42), 7–10. es_ES
dc.description.references Zhou, Y., Xia, C., Wang, H., & Qi, J. (2009). Research on survivability of mobile Ad-hoc network. Journal of Software Engineering & Applications, 2, 50–54. es_ES
dc.description.references Fei, X., & Wen-ye, W. (2010). On the survivability of wireless Ad hoc networks with node misbehaviors and failures. IEEE Transactions on Dependable and Secure Computing, 7(2), 284–299. es_ES
dc.description.references Azni, A. H., Ahmad, R., & Noh, Z. (2013). Survivability modeling and analysis of mobile Ad hoc network with correlated node behavior. Procedia Engineering, 53, 435–440. es_ES
dc.description.references Mahmoud, M., & Shen, X. (2011). An integrated stimulation and punishment mechanism for thwarting packet dropping attack in multihop wireless networks. IEEE Transaction on Vehicular Technology, 60(8), 3947–3962. es_ES
dc.description.references Uster, H., & Lin, H. (2011). Integrated topology control and routing in wireless sensor networks for prolonged network lifetime. Ad Hoc Networks, 9, 835–851. es_ES
dc.description.references Guo, S. (2012). A clustering algorithm based on weight value for Ad hoc network. Network and Communication, 2, 41–43. es_ES
dc.description.references Yimei, K., et al. (2012). A low-power hierarchical wireless sensor network topology control algorithm. Automation Journal, 4(4), 543–549. es_ES
dc.description.references Han, G., Chao, J., Zhang, C., Shu, L., & Li, Q. (2014). The impacts of mobility models on DV-hop based localization in mobile wireless sensor networks. Journal of Network and Computer Applications, 42(6), 70–79. es_ES
dc.description.references Konak, A., Buchert, G. E., & Juro, J. (2013). A flocking-based approach to maintain connectivity in mobile wireless Ad hoc networks. Applied Soft Computing, 13, 1284–1291. es_ES
dc.description.references Liu, A., Ren, J., Li, X., Chen, Z., & Shen, X. (2012). Design principles and improvement of cost function based energy ware routing algorithms for wireless sensor networks. Computer Networks, 56, 19511967. es_ES
dc.description.references Han, G., Jiang, J., Shen, W., Shu, L., & Rodrigues, J. J. P. C. (2013). IDSEP: A novel intrusion detection scheme based on energy prediction in cluster-based wireless sensor networks. IET Information Security, 7(2), 97–105. es_ES
dc.description.references Ren, F., Zhang, J., He, T., Lin, C., & Das, S. K. (2011). EBRP: Energy balanced routing protocol for data gathering in wireless sensor networks. IEEE Transaction on Parallel and Distributed System, 22(12), 2391–2405. es_ES
dc.description.references Hui, Z., Biao, H., & Qing, D. (2014). A stable and load balanced clustering algorithm for Ad hoc. Information & Communications, 1, 28–29. es_ES
dc.description.references Mistra, S., & Thomasinous, P. D. (2010). A simple, least-time and energy efficient routing protocol with one level data aggregation for wireless sensor networks. System and Software, 83, 852860. es_ES
dc.description.references Yang, S., Dai, F., Cardei, M. et al. (2005). On multiple point coverage in wireless sensor. In IEEE conference on mobile Ad hoc and sensor systems. Washington, DC, USA: IEEE, pp. 757–764. es_ES
dc.description.references Chengfa, L., Guihai, C., Mao, Y., & Jie, W. (2007). An uneven cluster-based routing protocol for wireless sensor networks. Chinese Journal of Computers, 30(1), 27–36. es_ES
dc.description.references Wang, Z., Wang, Z., Chen, H., et al. (2013). HierTrack: An energy-efficient cluster-based target tracking system for wireless sensor networks. Journal of Zhejiang University-Science, 14(6), 27–36. es_ES
dc.description.references Demigha, O., Hidouci, W. K., & Ahmed, T. (2012). On energy efficiency in collaborative target tracking in wireless sensor network: A review. IEEE Communications Surveys & Tutorials, 99, 1–13. es_ES
dc.description.references Xia, S., Haijun, W., & Hongbin, C. (2011). A lower power consumption clustering protocol based on the multi-weight for WSNs. Computer Measurement & Control, 19(9), 2329–2331. es_ES
dc.description.references Zhang, Y., Song, R., Chen, Z., et al. (2011). Research on topology control algorithm of mobile sensor networks based on cluster head selection. Chinese Journal of Sensors and Actuators, 11, 1602–1606. es_ES
dc.description.references Zhang, D., Zhu, Y., Zhao, C., et al. (2012). A new constructing approach for a weighted topology of wireless sensor networks based on local-world theory for the internet of things. Computers and Mathematics with Applications, 64, 1044–1055. es_ES
dc.description.references Liqiang, L., Xiyi, Z., & Ge, Z. (2010). An on-demand weighted clustering algorithm in wireless sensor networks. Computer Applications and Software, 9, 85–87. es_ES
dc.description.references Shouhong, Z., Cunhua, Z., & Mingmei, S. (2010). An adaptive distributed weighted clustering algorithm for mobile Ad hoc networks. Journal of Suzhou University of Science and Technology (Natural Science), 6, 43–47. es_ES
dc.description.references Yuqing, M., & Xiaoyu, L. I. (2014). Adaptive security weighted clustering algorithm of Ad Hoc network. Computer Engineering and Design, 35(4), 3346–3350. es_ES
dc.description.references Jiang, J., Han, G., Wang, F., Shu, L., & Guizani, M. An efficient distributed trust model for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems. DOI: 10.1109/TPDS.2014.2320505 es_ES
dc.description.references Xu, X., & Liang, W. (2011). Placing optimal number of sinks in sensor networks for network lifetime maximization. In Proceedings of IEEE ICC ’11, June, pp. 1–6. es_ES
dc.description.references Jiayan, W., Li, C., & Kai, M. (2007). Optimal neighboring nodes of small-world wireless sensor networks. Electronic Measurement Technology, 30(4), 202–205. es_ES
dc.description.references Maojia, G. (2012). Small world network model for the wireless sensor networks. Network and Communication, 31(20), 57–59. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem