- -

In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rogina, Anamarija es_ES
dc.contributor.author Rico Tortosa, Patricia María es_ES
dc.contributor.author Gallego-Ferrer, Gloria es_ES
dc.contributor.author Ivankovic, Marica es_ES
dc.contributor.author Ivankovic, Hrvoje es_ES
dc.date.accessioned 2016-06-10T07:35:00Z
dc.date.available 2016-06-10T07:35:00Z
dc.date.issued 2016-04
dc.identifier.issn 0090-6964
dc.identifier.uri http://hdl.handle.net/10251/65622
dc.description.abstract Highly porous chitosan/hydroxyapatite composite structures with different weight ratios (100/0; 90/10; 80/20; 70/30; 60/40; 50/50; 40/60) have been prepared by precipitation method and freeze-gelation technique using calcite, urea phosphate and chitosan as starting materials. The composition of prepared composite scaffolds was characterized by X-ray diffraction analysis and Fourier transformed infrared spectroscopy, while morphology of scaffolds was imaged by scanning electron microscopy. Mercury intrusion porosimetry measurements of prepared scaffolds have shown different porosity and microstructure regarding to the HA content, along with SEM observations of scaffolds after being immersed in physiological medium. The results of swelling capacity and compressive strength measured in Dulbecco’s phosphate buffer saline (DPBS) have shown higher values for composite scaffolds with lower in situ HA content. Viability, proliferation and differentiation of MC3T3-E1 cells seeded on different scaffolds have been evaluated by live dead assay and confocal scan microscopy. Our results suggest that the increase of HA content enhance osteoblast differentiation confirming osteogenic properties of highly porous CS/HA scaffolds for tissue engineering applications in bone repair. es_ES
dc.description.sponsorship The financial support of the Croatian Science Foundation (project: "Development of Biocompatible Hydroxyapatite Based Materials for Bone Tissue Engineering Applications") and L'Oreal-UNESCO Foundation 'For Women in Science' is gratefully acknowledged. The financial support from the Spanish Ministry of Economy and Competitiveness and the Feder funds through the MAT2013-46467-C4-1-R project is acknowledged by the Spanish co-authors. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors want to acknowledge Pilar Gomez Tena and Sergio Mestre Beltran from Instituto de Tecnologia Ceramica, Castellon, Spain, for theirs assistance with porosity measurements. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Annals of Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chitosan es_ES
dc.subject Hydroxyapatite es_ES
dc.subject Scaffold es_ES
dc.subject Unconfined compression es_ES
dc.subject Porosity es_ES
dc.subject MC3T3-E1 differentiation es_ES
dc.subject Osteogenic markers es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10439-015-1418-0
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Rogina, A.; Rico Tortosa, PM.; Gallego-Ferrer, G.; Ivankovic, M.; Ivankovic, H. (2016). In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds. Annals of Biomedical Engineering. 44(4):1107-1119. https://doi.org/10.1007/s10439-015-1418-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10439-015-1418-0 es_ES
dc.description.upvformatpinicio 1107 es_ES
dc.description.upvformatpfin 1119 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 306338 es_ES
dc.identifier.eissn 1573-9686
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder L'Oréal es_ES
dc.contributor.funder Croatian Science Foundation es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.description.references Azzaoui, K., A. Lamhamdi, E. M. Mejdoubi, M. Berrabah, B. Hammouti, A. Elidrissi, M. M. G. Fouda, and S. S. Al-Deyab. Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances. Carbohydr. Polym. 111:41–46, 2014. es_ES
dc.description.references Bacakova, L., E. Filova, M. Parizek, T. Ruml, and V. Svorcik. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotech. Adv. 29:739–767, 2011. es_ES
dc.description.references Bose, S., and S. Tarafder. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8:1401–1421, 2012. es_ES
dc.description.references Chan, B. P., and K. W. Leong. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 17:467–479, 2008. es_ES
dc.description.references Dhandayuthapani, B., Y. Yoshida, T. Maekawa, and D. S. Kumar. Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci. 1–19:2011, 2011. es_ES
dc.description.references Dorozhkin, S. V. Calcium orthophosphate-based bioceramics. Materials 6:3840–3942, 2013. es_ES
dc.description.references Frohbergh, M. E., A. Katsman, G. P. Botta, P. Lazarovici, C. L. Schauer, U. G. K. Wegst, and P. I. Lelkes. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33:9167–9178, 2012. es_ES
dc.description.references Gerstenfeld, L. C., C. M. Edgar, S. Kakar, K. A. Jacobsen, and T. A. Einhorn. Osteogenic growth factors and cytokines and their role in bone repair. In: Engineering of Functional Skeletal Tissues, in Topics in Bone Biology, edited by M. C. Farach-Carson, A. G. Mikos, and F. Bronner. London: Springer, 2005, pp. 17–44. es_ES
dc.description.references Harada, S.-I., and G. A. Rodan. Control of osteoblast function and regulation of bone mass. Nature 423:349–355, 2003. es_ES
dc.description.references Ishihara, S., T. Matsumoto, T. Onoki, T. Sohmura, and A. Nakahira. New concept bioceramics composed of octacalcium phosphate (OCP) and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater. Sci. Eng. C 29:1885–1888, 2009. es_ES
dc.description.references Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491, 2005. es_ES
dc.description.references Kirkham, G.R., Cartmell, S.H. Genes and proteins involved in the regulation of osteogenesis. In: Topics in Tissue Engineering, edited by N. Ashammakhi, R.L. Reis, and E. Chiellini, R.R.E.C., 2007. pp. 1–22. es_ES
dc.description.references Lee, H., and G. H. Kim. Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications. Carbohydr. Polym. 85:817–823, 2010. es_ES
dc.description.references Lewandowska, K. Miscibility and interactions in chitosan acetate/poly(Nvinylpyrrolidone) blends. Thermochim. Acta 517:90–97, 2011. es_ES
dc.description.references Li, J., D. Zhu, J. Yin, Y. Liu, F. Yao, and K. Yao. Formation of nano-hydroxyapatite cristal in situ in chitosan-pectin polyelectrolyte complex network. Mater. Sci. Eng. C 30:795–803, 2010. es_ES
dc.description.references Martel-Estrada, S. A., C. A. Martínez-Pérez, J. G. Chacón-Nava, P. E. García-Casillas, and I. Olivas-Armendariz. Synthesis and thermo-physical properties of chitosan/poly(dl-lactide-co-glycolide) composites prepared by thermally induced phase separation. Carbohydr. Polym. 81:775–783, 2010. es_ES
dc.description.references Martins, A. M., R. C. Pereira, I. B. Leonor, H. S. Azevedo, and R. L. Reis. Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: a novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation. Acta Biomater. 5:3328–3336, 2009. es_ES
dc.description.references Martins, A. M., M. I. Santos, H. S. Azevedo, P. B. Malafaya, and R. L. Reis. Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications. Acta Biomater. 5:1637–1645, 2008. es_ES
dc.description.references Mohamed, K. R., Z. M. El-Rashidy, and A. A. Salama. In vitro properties of nanohydroxyapatite/chitosan biocomposites. Ceram. Int. 37:3265–3271, 2011. es_ES
dc.description.references O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14:88–95, 2011. es_ES
dc.description.references Osborn, J. F., and H. Newesely. The material science of calcium phosphate ceramics. Biomaterials 1:108–111, 1980. es_ES
dc.description.references Rogina, A., M. Ivanković, and H. Ivanković. Preparation and characterization of nano-hydroxyapatite within chitosan matrix. Mater. Sci. Eng. C 33:4539–4544, 2013. es_ES
dc.description.references Rogina, A., P. Rico, G. Gallego Ferrer, M. Ivanković, and H. Ivanković. Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. Eur. Polym. J. 68:278–287, 2015. es_ES
dc.description.references Sarem, M., F. Moztarzadeh, and M. Mozafari. How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues? Carbohydr. Polym. 93:635–643, 2013. es_ES
dc.description.references Seibel, M. J. Biochemical markers of bone turnover part I: biochemistry and variability. Clin. Biochem. Rev 26:97–122, 2005. es_ES
dc.description.references Shaltout, A. A., M. A. Allam, and M. A. Moharram. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources. Spectrochim. Acta A 83:56–60, 2011. es_ES
dc.description.references Silva, S. S., S. M. Luna, M. E. Gomes, J. Benesch, I. Paskuleva, J. F. Mano, and R. L. Reis. Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol. Biosci. 8:568–576, 2007. es_ES
dc.description.references Stein, G. S., J. B. Lian, A. J. van Wijnen, J. L. Stein, M. Montecino, A. Javed, A. K. Zaidi, D. W. Young, J.-Y. Choi, and S. M. Pockwinse. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23:4315–4329, 2004. es_ES
dc.description.references Suvorova, E. I., F. Christensson, H. E. Lundager Madsen, and A. A. Chernov. Terrestrial and space-grown HAP and OCP crystals: effect of growth conditions on perfection and morphology. J. Cryst. Growth 186:262–274, 1998. es_ES
dc.description.references Suzuki, O. Interface of synthetic inorganic biomaterials and bone regeneration. Int. Congr. Ser. 1284:274–283, 2005. es_ES
dc.description.references Suzuki, O., S. Kamakura, T. Katagiri, M. Nakamura, B. Zhao, Y. Honda, and R. Kamijo. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27:2671–2681, 2006. es_ES
dc.description.references Wagoner Johnson, A. J., and B. A. Herschler. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 7:16–30, 2011. es_ES
dc.description.references Wang, Y.-C., M.-C. Lin, D.-M. Wang, and H.-J. Hsieh. Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24:1047–1057, 2003. es_ES
dc.description.references Yuan, N. Y., Y. A. Lin, M. H. Ho, D. M. Wang, J. Y. Lai, and H. J. Hsieh. Effect of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate and carboxymethyl cellulose by freeze-gelation method. Carbohydr. Polym. 78:349–356, 2009. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem