Mostrar el registro sencillo del ítem
dc.contributor.author | Rogina, Anamarija | es_ES |
dc.contributor.author | Rico Tortosa, Patricia María | es_ES |
dc.contributor.author | Gallego-Ferrer, Gloria | es_ES |
dc.contributor.author | Ivankovic, Marica | es_ES |
dc.contributor.author | Ivankovic, Hrvoje | es_ES |
dc.date.accessioned | 2016-06-10T07:35:00Z | |
dc.date.available | 2016-06-10T07:35:00Z | |
dc.date.issued | 2016-04 | |
dc.identifier.issn | 0090-6964 | |
dc.identifier.uri | http://hdl.handle.net/10251/65622 | |
dc.description.abstract | Highly porous chitosan/hydroxyapatite composite structures with different weight ratios (100/0; 90/10; 80/20; 70/30; 60/40; 50/50; 40/60) have been prepared by precipitation method and freeze-gelation technique using calcite, urea phosphate and chitosan as starting materials. The composition of prepared composite scaffolds was characterized by X-ray diffraction analysis and Fourier transformed infrared spectroscopy, while morphology of scaffolds was imaged by scanning electron microscopy. Mercury intrusion porosimetry measurements of prepared scaffolds have shown different porosity and microstructure regarding to the HA content, along with SEM observations of scaffolds after being immersed in physiological medium. The results of swelling capacity and compressive strength measured in Dulbecco’s phosphate buffer saline (DPBS) have shown higher values for composite scaffolds with lower in situ HA content. Viability, proliferation and differentiation of MC3T3-E1 cells seeded on different scaffolds have been evaluated by live dead assay and confocal scan microscopy. Our results suggest that the increase of HA content enhance osteoblast differentiation confirming osteogenic properties of highly porous CS/HA scaffolds for tissue engineering applications in bone repair. | es_ES |
dc.description.sponsorship | The financial support of the Croatian Science Foundation (project: "Development of Biocompatible Hydroxyapatite Based Materials for Bone Tissue Engineering Applications") and L'Oreal-UNESCO Foundation 'For Women in Science' is gratefully acknowledged. The financial support from the Spanish Ministry of Economy and Competitiveness and the Feder funds through the MAT2013-46467-C4-1-R project is acknowledged by the Spanish co-authors. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The authors want to acknowledge Pilar Gomez Tena and Sergio Mestre Beltran from Instituto de Tecnologia Ceramica, Castellon, Spain, for theirs assistance with porosity measurements. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Annals of Biomedical Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Chitosan | es_ES |
dc.subject | Hydroxyapatite | es_ES |
dc.subject | Scaffold | es_ES |
dc.subject | Unconfined compression | es_ES |
dc.subject | Porosity | es_ES |
dc.subject | MC3T3-E1 differentiation | es_ES |
dc.subject | Osteogenic markers | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10439-015-1418-0 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Rogina, A.; Rico Tortosa, PM.; Gallego-Ferrer, G.; Ivankovic, M.; Ivankovic, H. (2016). In Situ Hydroxyapatite Content Affects the Cell Differentiation on Porous Chitosan/Hydroxyapatite Scaffolds. Annals of Biomedical Engineering. 44(4):1107-1119. https://doi.org/10.1007/s10439-015-1418-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10439-015-1418-0 | es_ES |
dc.description.upvformatpinicio | 1107 | es_ES |
dc.description.upvformatpfin | 1119 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 44 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 306338 | es_ES |
dc.identifier.eissn | 1573-9686 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | L'Oréal | es_ES |
dc.contributor.funder | Croatian Science Foundation | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.description.references | Azzaoui, K., A. Lamhamdi, E. M. Mejdoubi, M. Berrabah, B. Hammouti, A. Elidrissi, M. M. G. Fouda, and S. S. Al-Deyab. Synthesis and characterization of composite based on cellulose acetate and hydroxyapatite application to the absorption of harmful substances. Carbohydr. Polym. 111:41–46, 2014. | es_ES |
dc.description.references | Bacakova, L., E. Filova, M. Parizek, T. Ruml, and V. Svorcik. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotech. Adv. 29:739–767, 2011. | es_ES |
dc.description.references | Bose, S., and S. Tarafder. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 8:1401–1421, 2012. | es_ES |
dc.description.references | Chan, B. P., and K. W. Leong. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur. Spine J. 17:467–479, 2008. | es_ES |
dc.description.references | Dhandayuthapani, B., Y. Yoshida, T. Maekawa, and D. S. Kumar. Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci. 1–19:2011, 2011. | es_ES |
dc.description.references | Dorozhkin, S. V. Calcium orthophosphate-based bioceramics. Materials 6:3840–3942, 2013. | es_ES |
dc.description.references | Frohbergh, M. E., A. Katsman, G. P. Botta, P. Lazarovici, C. L. Schauer, U. G. K. Wegst, and P. I. Lelkes. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33:9167–9178, 2012. | es_ES |
dc.description.references | Gerstenfeld, L. C., C. M. Edgar, S. Kakar, K. A. Jacobsen, and T. A. Einhorn. Osteogenic growth factors and cytokines and their role in bone repair. In: Engineering of Functional Skeletal Tissues, in Topics in Bone Biology, edited by M. C. Farach-Carson, A. G. Mikos, and F. Bronner. London: Springer, 2005, pp. 17–44. | es_ES |
dc.description.references | Harada, S.-I., and G. A. Rodan. Control of osteoblast function and regulation of bone mass. Nature 423:349–355, 2003. | es_ES |
dc.description.references | Ishihara, S., T. Matsumoto, T. Onoki, T. Sohmura, and A. Nakahira. New concept bioceramics composed of octacalcium phosphate (OCP) and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater. Sci. Eng. C 29:1885–1888, 2009. | es_ES |
dc.description.references | Karageorgiou, V., and D. Kaplan. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491, 2005. | es_ES |
dc.description.references | Kirkham, G.R., Cartmell, S.H. Genes and proteins involved in the regulation of osteogenesis. In: Topics in Tissue Engineering, edited by N. Ashammakhi, R.L. Reis, and E. Chiellini, R.R.E.C., 2007. pp. 1–22. | es_ES |
dc.description.references | Lee, H., and G. H. Kim. Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications. Carbohydr. Polym. 85:817–823, 2010. | es_ES |
dc.description.references | Lewandowska, K. Miscibility and interactions in chitosan acetate/poly(Nvinylpyrrolidone) blends. Thermochim. Acta 517:90–97, 2011. | es_ES |
dc.description.references | Li, J., D. Zhu, J. Yin, Y. Liu, F. Yao, and K. Yao. Formation of nano-hydroxyapatite cristal in situ in chitosan-pectin polyelectrolyte complex network. Mater. Sci. Eng. C 30:795–803, 2010. | es_ES |
dc.description.references | Martel-Estrada, S. A., C. A. Martínez-Pérez, J. G. Chacón-Nava, P. E. García-Casillas, and I. Olivas-Armendariz. Synthesis and thermo-physical properties of chitosan/poly(dl-lactide-co-glycolide) composites prepared by thermally induced phase separation. Carbohydr. Polym. 81:775–783, 2010. | es_ES |
dc.description.references | Martins, A. M., R. C. Pereira, I. B. Leonor, H. S. Azevedo, and R. L. Reis. Chitosan scaffolds incorporating lysozyme into CaP coatings produced by a biomimetic route: a novel concept for tissue engineering combining a self-regulated degradation system with in situ pore formation. Acta Biomater. 5:3328–3336, 2009. | es_ES |
dc.description.references | Martins, A. M., M. I. Santos, H. S. Azevedo, P. B. Malafaya, and R. L. Reis. Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications. Acta Biomater. 5:1637–1645, 2008. | es_ES |
dc.description.references | Mohamed, K. R., Z. M. El-Rashidy, and A. A. Salama. In vitro properties of nanohydroxyapatite/chitosan biocomposites. Ceram. Int. 37:3265–3271, 2011. | es_ES |
dc.description.references | O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14:88–95, 2011. | es_ES |
dc.description.references | Osborn, J. F., and H. Newesely. The material science of calcium phosphate ceramics. Biomaterials 1:108–111, 1980. | es_ES |
dc.description.references | Rogina, A., M. Ivanković, and H. Ivanković. Preparation and characterization of nano-hydroxyapatite within chitosan matrix. Mater. Sci. Eng. C 33:4539–4544, 2013. | es_ES |
dc.description.references | Rogina, A., P. Rico, G. Gallego Ferrer, M. Ivanković, and H. Ivanković. Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. Eur. Polym. J. 68:278–287, 2015. | es_ES |
dc.description.references | Sarem, M., F. Moztarzadeh, and M. Mozafari. How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues? Carbohydr. Polym. 93:635–643, 2013. | es_ES |
dc.description.references | Seibel, M. J. Biochemical markers of bone turnover part I: biochemistry and variability. Clin. Biochem. Rev 26:97–122, 2005. | es_ES |
dc.description.references | Shaltout, A. A., M. A. Allam, and M. A. Moharram. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources. Spectrochim. Acta A 83:56–60, 2011. | es_ES |
dc.description.references | Silva, S. S., S. M. Luna, M. E. Gomes, J. Benesch, I. Paskuleva, J. F. Mano, and R. L. Reis. Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol. Biosci. 8:568–576, 2007. | es_ES |
dc.description.references | Stein, G. S., J. B. Lian, A. J. van Wijnen, J. L. Stein, M. Montecino, A. Javed, A. K. Zaidi, D. W. Young, J.-Y. Choi, and S. M. Pockwinse. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23:4315–4329, 2004. | es_ES |
dc.description.references | Suvorova, E. I., F. Christensson, H. E. Lundager Madsen, and A. A. Chernov. Terrestrial and space-grown HAP and OCP crystals: effect of growth conditions on perfection and morphology. J. Cryst. Growth 186:262–274, 1998. | es_ES |
dc.description.references | Suzuki, O. Interface of synthetic inorganic biomaterials and bone regeneration. Int. Congr. Ser. 1284:274–283, 2005. | es_ES |
dc.description.references | Suzuki, O., S. Kamakura, T. Katagiri, M. Nakamura, B. Zhao, Y. Honda, and R. Kamijo. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 27:2671–2681, 2006. | es_ES |
dc.description.references | Wagoner Johnson, A. J., and B. A. Herschler. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 7:16–30, 2011. | es_ES |
dc.description.references | Wang, Y.-C., M.-C. Lin, D.-M. Wang, and H.-J. Hsieh. Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering. Biomaterials 24:1047–1057, 2003. | es_ES |
dc.description.references | Yuan, N. Y., Y. A. Lin, M. H. Ho, D. M. Wang, J. Y. Lai, and H. J. Hsieh. Effect of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate and carboxymethyl cellulose by freeze-gelation method. Carbohydr. Polym. 78:349–356, 2009. | es_ES |