- -

Mobile Pollution Data Sensing Using UAVs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mobile Pollution Data Sensing Using UAVs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alvear, Oscar es_ES
dc.contributor.author Tavares de Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Hernández Orallo, Enrique es_ES
dc.contributor.author Cano Escribá, Juan Carlos es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.date.accessioned 2016-06-10T11:31:02Z
dc.date.available 2016-06-10T11:31:02Z
dc.date.issued 2015-12
dc.identifier.isbn 978-1-4503-3493-8
dc.identifier.uri http://hdl.handle.net/10251/65645
dc.description © ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM, In Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia (pp. 393-397). http://dx.doi.org/10.1145/2837126.2843842 es_ES
dc.description.abstract Nowadays, the impact of global warming is causing societies to become more aware and responsive to environmental problems. As a result, pollution sensing is gaining more relevance. In order to have a strict control over air quality, the use of mobile sensors is becoming a promising alternative to traditional air quality stations. Mobile sensors allow to easily perform measurements in many different places, thereby offering substantial improvements in terms of the spatial granularity of the data gathered. Pollution monitoring near large industrial areas or in rural areas where transportation facilities are poor or inexistent can complicate the mobile sensing approach. To address this problem, in this paper we propose endowing Unmanned Aerial Vehicles (UAVs) with pollution sensors, allowing them to become autonomous air monitoring stations. The proposed solution has the potential to quickly cover a target region at a low cost, and providing great flexibility. es_ES
dc.description.sponsorship This work was partially supported by the “Ministerio de Economia y Competitividad, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014,” Spain, under Grant TEC2014-52690-R, and by the Generalitat Valenciana, Spain (Grant AICO/2015/113). es_ES
dc.format.extent 5 es_ES
dc.language Inglés es_ES
dc.publisher ACM es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mobile sensing es_ES
dc.subject Multicopters es_ES
dc.subject UAVs es_ES
dc.subject Environmental monitoring. es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Mobile Pollution Data Sensing Using UAVs es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1145/2837126.2843842
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52690-R/ES/INTEGRACION DEL SMARTPHONE Y EL VEHICULO PARA CONECTAR CONDUCTORES, SENSORES Y ENTORNO A TRAVES DE UNA ARQUITECTURA DE SERVICIOS FUNCIONALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F113/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Alvear, O.; Tavares De Araujo Cesariny Calafate, CM.; Hernández Orallo, E.; Cano Escribá, JC.; Manzoni, P. (2015). Mobile Pollution Data Sensing Using UAVs. ACM. https://doi.org/10.1145/2837126.2843842 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 13th International Conference on Advances in Mobile Computing and Multimedia (MoMM 2015) es_ES
dc.relation.conferencedate December 11-13, 2015 es_ES
dc.relation.conferenceplace Brussels, Belgium es_ES
dc.relation.publisherversion http://dl.acm.org/citation.cfm?id=2843842&CFID=628435637&CFTOKEN=10629677 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 298138 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references European Topic Centre for Air Pollution and Climate Change Mitigation (ETC/ACM). http://acm.eionet.europa.eu/, Accessed: October 3, 2015. es_ES
dc.description.references United States Environmental Protection Agency (EPA). http://www.epa.gov/, Accessed: October 3, 2015. es_ES
dc.description.references A. Adam-Poupart, A. Brand, M. Fournier, M. Jerrett, and A. Smargiassi. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy--LUR approaches. Environmental health perspectives, 122(9):970, 2014. es_ES
dc.description.references K. Anderson and K. Gaston. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3):138--146, 2013. es_ES
dc.description.references J. Bellvert, P. Zarco-Tejada, J. Girona, and E. Fereres. Mapping crop water stress index in a `pinot-noir' vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agriculture, 15(4):361--376, 2014. es_ES
dc.description.references M. Brković and V. Sretović. Urban sensing--smart solutions for monitoring environmental quality: Case studies from serbia. In 48th ISOCARP International Congress: Fast Forward: Planning in a (hyper) dynamic urban context, Perm, Russia, 2012. es_ES
dc.description.references Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, and X. Jiang. AirCloud: a cloud-based air-quality monitoring system for everyone. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, pages 251--265. ACM, 2014. es_ES
dc.description.references I. Colomina and P. Molina. Unmanned aerial systems for photogrammetry and remote sensing: A review. {ISPRS} Journal of Photogrammetry and Remote Sensing, 92:79--97, 2014. es_ES
dc.description.references T. Cox, C. Nagy, M. Skoog, and I. Somers. Civil UAV Capability Assessment. NASA, 2004. es_ES
dc.description.references R. P. Foundation. Raspberry pi. https://www.raspberrypi.org/, Accessed: October 10, 2015. es_ES
dc.description.references S. Gupte, P. Mohandas, and J. Conrad. A survey of quadrotor Unmanned Aerial Vehicles. In Southeastcon, 2012 Proceedings of IEEE, pages 1--6, March 2012. es_ES
dc.description.references S.-C. Hu, Y.-C. Wang, C.-Y. Huang, and Y.-C. Tseng. Measuring air quality in city areas by vehicular wireless sensor networks. Journal of Systems and Software, 84(11):2005--2012, 2011. es_ES
dc.description.references C. H. Hugenholtz, B. J. Moorman, K. Riddell, and K. Whitehead. Small unmanned aircraft systems for remote sensing and Earth science research. Eos, Transactions American Geophysical Union, 93(25):236--236, 2012. es_ES
dc.description.references S. Illingworth, G. Allen, C. Percival, P. Hollingsworth, M. Gallagher, H. Ricketts, H. Hayes, P. ÅĄadosz, D. Crawley, and G. Roberts. Measurement of boundary layer ozone concentrations on-board a Skywalker unmanned aerial vehicle. Atmospheric Science Letters, 15(4):252--258, 2014. es_ES
dc.description.references D. Industries. Grovepi. http://www.dexterindustries.com/grovepi/, Accessed: October 10, 2015. es_ES
dc.description.references L.-J. S. Liu and A. Rossini. Use of kriging models to predict 12-hour mean ozone concentrations in metropolitan toronto-a pilot study. Environment International, 22(6):677--692, 1996. es_ES
dc.description.references Q. McFrederick, J. Kathilankal, and J. Fuentes. Air pollution modifies floral scent trails. Atmospheric Environment, 42(10):2336--2348, 2008. es_ES
dc.description.references M. L. Stein. Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York, 1999. es_ES
dc.description.references C. Zhang and J. Kovacs. The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6):693--712, 2012. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem