Mostrar el registro sencillo del ítem
dc.contributor.author | Alvear, Oscar | es_ES |
dc.contributor.author | Tavares de Araujo Cesariny Calafate, Carlos Miguel | es_ES |
dc.contributor.author | Hernández Orallo, Enrique | es_ES |
dc.contributor.author | Cano Escribá, Juan Carlos | es_ES |
dc.contributor.author | Manzoni, Pietro | es_ES |
dc.date.accessioned | 2016-06-10T11:31:02Z | |
dc.date.available | 2016-06-10T11:31:02Z | |
dc.date.issued | 2015-12 | |
dc.identifier.isbn | 978-1-4503-3493-8 | |
dc.identifier.uri | http://hdl.handle.net/10251/65645 | |
dc.description | © ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM, In Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia (pp. 393-397). http://dx.doi.org/10.1145/2837126.2843842 | es_ES |
dc.description.abstract | Nowadays, the impact of global warming is causing societies to become more aware and responsive to environmental problems. As a result, pollution sensing is gaining more relevance. In order to have a strict control over air quality, the use of mobile sensors is becoming a promising alternative to traditional air quality stations. Mobile sensors allow to easily perform measurements in many different places, thereby offering substantial improvements in terms of the spatial granularity of the data gathered. Pollution monitoring near large industrial areas or in rural areas where transportation facilities are poor or inexistent can complicate the mobile sensing approach. To address this problem, in this paper we propose endowing Unmanned Aerial Vehicles (UAVs) with pollution sensors, allowing them to become autonomous air monitoring stations. The proposed solution has the potential to quickly cover a target region at a low cost, and providing great flexibility. | es_ES |
dc.description.sponsorship | This work was partially supported by the “Ministerio de Economia y Competitividad, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014,” Spain, under Grant TEC2014-52690-R, and by the Generalitat Valenciana, Spain (Grant AICO/2015/113). | es_ES |
dc.format.extent | 5 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | ACM | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Mobile sensing | es_ES |
dc.subject | Multicopters | es_ES |
dc.subject | UAVs | es_ES |
dc.subject | Environmental monitoring. | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Mobile Pollution Data Sensing Using UAVs | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1145/2837126.2843842 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-52690-R/ES/INTEGRACION DEL SMARTPHONE Y EL VEHICULO PARA CONECTAR CONDUCTORES, SENSORES Y ENTORNO A TRAVES DE UNA ARQUITECTURA DE SERVICIOS FUNCIONALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F113/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Alvear, O.; Tavares De Araujo Cesariny Calafate, CM.; Hernández Orallo, E.; Cano Escribá, JC.; Manzoni, P. (2015). Mobile Pollution Data Sensing Using UAVs. ACM. https://doi.org/10.1145/2837126.2843842 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 13th International Conference on Advances in Mobile Computing and Multimedia (MoMM 2015) | es_ES |
dc.relation.conferencedate | December 11-13, 2015 | es_ES |
dc.relation.conferenceplace | Brussels, Belgium | es_ES |
dc.relation.publisherversion | http://dl.acm.org/citation.cfm?id=2843842&CFID=628435637&CFTOKEN=10629677 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 298138 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | European Topic Centre for Air Pollution and Climate Change Mitigation (ETC/ACM). http://acm.eionet.europa.eu/, Accessed: October 3, 2015. | es_ES |
dc.description.references | United States Environmental Protection Agency (EPA). http://www.epa.gov/, Accessed: October 3, 2015. | es_ES |
dc.description.references | A. Adam-Poupart, A. Brand, M. Fournier, M. Jerrett, and A. Smargiassi. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy--LUR approaches. Environmental health perspectives, 122(9):970, 2014. | es_ES |
dc.description.references | K. Anderson and K. Gaston. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3):138--146, 2013. | es_ES |
dc.description.references | J. Bellvert, P. Zarco-Tejada, J. Girona, and E. Fereres. Mapping crop water stress index in a `pinot-noir' vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precision Agriculture, 15(4):361--376, 2014. | es_ES |
dc.description.references | M. Brković and V. Sretović. Urban sensing--smart solutions for monitoring environmental quality: Case studies from serbia. In 48th ISOCARP International Congress: Fast Forward: Planning in a (hyper) dynamic urban context, Perm, Russia, 2012. | es_ES |
dc.description.references | Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, and X. Jiang. AirCloud: a cloud-based air-quality monitoring system for everyone. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, pages 251--265. ACM, 2014. | es_ES |
dc.description.references | I. Colomina and P. Molina. Unmanned aerial systems for photogrammetry and remote sensing: A review. {ISPRS} Journal of Photogrammetry and Remote Sensing, 92:79--97, 2014. | es_ES |
dc.description.references | T. Cox, C. Nagy, M. Skoog, and I. Somers. Civil UAV Capability Assessment. NASA, 2004. | es_ES |
dc.description.references | R. P. Foundation. Raspberry pi. https://www.raspberrypi.org/, Accessed: October 10, 2015. | es_ES |
dc.description.references | S. Gupte, P. Mohandas, and J. Conrad. A survey of quadrotor Unmanned Aerial Vehicles. In Southeastcon, 2012 Proceedings of IEEE, pages 1--6, March 2012. | es_ES |
dc.description.references | S.-C. Hu, Y.-C. Wang, C.-Y. Huang, and Y.-C. Tseng. Measuring air quality in city areas by vehicular wireless sensor networks. Journal of Systems and Software, 84(11):2005--2012, 2011. | es_ES |
dc.description.references | C. H. Hugenholtz, B. J. Moorman, K. Riddell, and K. Whitehead. Small unmanned aircraft systems for remote sensing and Earth science research. Eos, Transactions American Geophysical Union, 93(25):236--236, 2012. | es_ES |
dc.description.references | S. Illingworth, G. Allen, C. Percival, P. Hollingsworth, M. Gallagher, H. Ricketts, H. Hayes, P. ÅĄadosz, D. Crawley, and G. Roberts. Measurement of boundary layer ozone concentrations on-board a Skywalker unmanned aerial vehicle. Atmospheric Science Letters, 15(4):252--258, 2014. | es_ES |
dc.description.references | D. Industries. Grovepi. http://www.dexterindustries.com/grovepi/, Accessed: October 10, 2015. | es_ES |
dc.description.references | L.-J. S. Liu and A. Rossini. Use of kriging models to predict 12-hour mean ozone concentrations in metropolitan toronto-a pilot study. Environment International, 22(6):677--692, 1996. | es_ES |
dc.description.references | Q. McFrederick, J. Kathilankal, and J. Fuentes. Air pollution modifies floral scent trails. Atmospheric Environment, 42(10):2336--2348, 2008. | es_ES |
dc.description.references | M. L. Stein. Statistical Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York, 1999. | es_ES |
dc.description.references | C. Zhang and J. Kovacs. The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6):693--712, 2012. | es_ES |