- -

NABS: non-local automatic brain hemisphere segmentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

NABS: non-local automatic brain hemisphere segmentation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero Gómez, José Enrique es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Tohka, Jussi es_ES
dc.contributor.author Coupé, Pierrick es_ES
dc.contributor.author Robles Viejo, Montserrat es_ES
dc.date.accessioned 2016-06-10T16:13:32Z
dc.date.available 2016-06-10T16:13:32Z
dc.date.issued 2015-05
dc.identifier.issn 0730-725X
dc.identifier.uri http://hdl.handle.net/10251/65655
dc.description "NOTICE: this is the author’s version of a work that was accepted for publication in Magnetic Resonance Imaging. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Magnetic Resonance Imaging, [Volume 33, Issue 4, May 2015, Pages 474–484] DOI 10.1016/j.mri.2015.02.005 es_ES
dc.description.abstract In this paper, we propose an automatic method to segment the five main brain sub-regions (i.e. left/right hemispheres, left/right cerebellum and brainstem) from magnetic resonance images. The proposed method uses a library of pre-labeled brain images in a stereotactic space in combination with a non-local label fusion scheme for segmentation. The main novelty of the proposed method is the use of a multi-label block-wise label fusion strategy specifically designed to deal with the classification of main brain sub-volumes that process only specific parts of the brain images significantly reducing the computational burden. The proposed method has been quantitatively evaluated against manual segmentations. The evaluation showed that the proposed method was faster while producing more accurate segmentations than a current state-of-the-art method. We also present evidences suggesting that the proposed method was more robust against brain pathologies than the compared method. Finally, we demonstrate the clinical value of our method compared to the state-of-the-art approach in terms of the asymmetry quantification in Alzheimer's disease. es_ES
dc.description.sponsorship We want to thank the OASIS (P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584) and IXI - Information eXtraction from Images (EPSRC GR/S21533/02) datasets promoters for making available this valuable resource to the scientific community which surely will boost the research in brain imaging. This work has been supported by the Spanish grant TIN2011-26727 from Ministerio de Ciencia e Innovacion. J. Tohka's work was supported by the Academy of Finland grant 130275. This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the Future Programme IdEx Bordeaux (ANR-10-IDEX-03-02), Cluster of Excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57). en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Magnetic Resonance Imaging es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Asymmetry es_ES
dc.subject Brain segmentation es_ES
dc.subject Brain volume analysis es_ES
dc.subject MRI es_ES
dc.subject Patch-based segmentation es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title NABS: non-local automatic brain hemisphere segmentation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.mri.2015.02.005
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2011-26727/ES/MEDIDA AUTOMATICA DE ESTRUCTURAS CEREBRALES CORTICALES A PARTIR DE IMAGENES DE RM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH/NATIONAL CENTER FOR RESEARCH RESOURCES/5U24RR021382-04/US/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/AKA//130275/FI/
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/FR/Translational Research and Advanced Imaging Laboratory/TRAIL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-0003/FR/Initiative d’excellence de l’Université de Bordeaux/IDEX BORDEAUX/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH/NATIONAL INSTITUTE ON AGING/5P50AG005681-19/US/
dc.relation.projectID info:eu-repo/grantAgreement/AKA//130275/FI/New neuroinformatics methods for automatic analysis of brain images/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-0003/
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Romero Gómez, JE.; Manjón Herrera, JV.; Tohka, J.; Coupé, P.; Robles Viejo, M. (2015). NABS: non-local automatic brain hemisphere segmentation. Magnetic Resonance Imaging. 33(4):474-484. https://doi.org/10.1016/j.mri.2015.02.005 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.mri.2015.02.005 es_ES
dc.description.upvformatpinicio 474 es_ES
dc.description.upvformatpfin 484 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 302943 es_ES
dc.identifier.pmid 25660644 en_EN
dc.contributor.funder Academy of Finland es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem