Mostrar el registro sencillo del ítem
dc.contributor.author | Romero Gómez, José Enrique | es_ES |
dc.contributor.author | Manjón Herrera, José Vicente | es_ES |
dc.contributor.author | Tohka, Jussi | es_ES |
dc.contributor.author | Coupé, Pierrick | es_ES |
dc.contributor.author | Robles Viejo, Montserrat | es_ES |
dc.date.accessioned | 2016-06-10T16:13:32Z | |
dc.date.available | 2016-06-10T16:13:32Z | |
dc.date.issued | 2015-05 | |
dc.identifier.issn | 0730-725X | |
dc.identifier.uri | http://hdl.handle.net/10251/65655 | |
dc.description | "NOTICE: this is the author’s version of a work that was accepted for publication in Magnetic Resonance Imaging. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Magnetic Resonance Imaging, [Volume 33, Issue 4, May 2015, Pages 474–484] DOI 10.1016/j.mri.2015.02.005 | es_ES |
dc.description.abstract | In this paper, we propose an automatic method to segment the five main brain sub-regions (i.e. left/right hemispheres, left/right cerebellum and brainstem) from magnetic resonance images. The proposed method uses a library of pre-labeled brain images in a stereotactic space in combination with a non-local label fusion scheme for segmentation. The main novelty of the proposed method is the use of a multi-label block-wise label fusion strategy specifically designed to deal with the classification of main brain sub-volumes that process only specific parts of the brain images significantly reducing the computational burden. The proposed method has been quantitatively evaluated against manual segmentations. The evaluation showed that the proposed method was faster while producing more accurate segmentations than a current state-of-the-art method. We also present evidences suggesting that the proposed method was more robust against brain pathologies than the compared method. Finally, we demonstrate the clinical value of our method compared to the state-of-the-art approach in terms of the asymmetry quantification in Alzheimer's disease. | es_ES |
dc.description.sponsorship | We want to thank the OASIS (P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584) and IXI - Information eXtraction from Images (EPSRC GR/S21533/02) datasets promoters for making available this valuable resource to the scientific community which surely will boost the research in brain imaging. This work has been supported by the Spanish grant TIN2011-26727 from Ministerio de Ciencia e Innovacion. J. Tohka's work was supported by the Academy of Finland grant 130275. This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the Future Programme IdEx Bordeaux (ANR-10-IDEX-03-02), Cluster of Excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Magnetic Resonance Imaging | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Asymmetry | es_ES |
dc.subject | Brain segmentation | es_ES |
dc.subject | Brain volume analysis | es_ES |
dc.subject | MRI | es_ES |
dc.subject | Patch-based segmentation | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | NABS: non-local automatic brain hemisphere segmentation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.mri.2015.02.005 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2011-26727/ES/MEDIDA AUTOMATICA DE ESTRUCTURAS CEREBRALES CORTICALES A PARTIR DE IMAGENES DE RM/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH/NATIONAL CENTER FOR RESEARCH RESOURCES/5U24RR021382-04/US/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/AKA//130275/FI/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/FR/Translational Research and Advanced Imaging Laboratory/TRAIL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-0003/FR/Initiative d’excellence de l’Université de Bordeaux/IDEX BORDEAUX/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NIH/NATIONAL INSTITUTE ON AGING/5P50AG005681-19/US/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AKA//130275/FI/New neuroinformatics methods for automatic analysis of brain images/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-0003/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Romero Gómez, JE.; Manjón Herrera, JV.; Tohka, J.; Coupé, P.; Robles Viejo, M. (2015). NABS: non-local automatic brain hemisphere segmentation. Magnetic Resonance Imaging. 33(4):474-484. https://doi.org/10.1016/j.mri.2015.02.005 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.mri.2015.02.005 | es_ES |
dc.description.upvformatpinicio | 474 | es_ES |
dc.description.upvformatpfin | 484 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 33 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 302943 | es_ES |
dc.identifier.pmid | 25660644 | en_EN |
dc.contributor.funder | Academy of Finland | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |