- -

Completeness in the Mackey topology

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Completeness in the Mackey topology

Show full item record

Guirao Sánchez, AJ.; Montesinos Santalucia, V. (2015). Completeness in the Mackey topology. Functional Analysis and Its Applications. 49(2):97-105. doi:10.1007/s10688-015-0091-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65718

Files in this item

Item Metadata

Title: Completeness in the Mackey topology
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
Bonet and Cascales [Non-complete Mackey topologies on Banach spaces, Bulletin of the Australian Mathematical Society, 81, 3 (2010), 409-413], answering a question of M. Kunze and W. Arendt, gave an example of a norming ...[+]
Subjects: Mackey-star topology , completeness , local completeness , Banach space
Copyrigths: Reserva de todos los derechos
Source:
Functional Analysis and Its Applications. (issn: 0016-2663 ) (eissn: 1573-8485 )
DOI: 10.1007/s10688-015-0091-2
Publisher:
Springer Verlag
Publisher version: http://dx.doi.org/10.1007/s10688-015-0091-2
Thanks:
The first author is supported in part by MICINN and FEDER (project no. MTM2008-05396), by Fundacion Seneca (project no. 08848/PI/08), by Generalitat Valenciana (GV/2010/036), and by Universitat Politecnica de Valencia ...[+]
Type: Artículo

References

J. Bonet and B. Cascales, “Non-complete Mackey topologies on Banach spaces,” Bull. Aust. Math. Soc., 81:3 (2010), 409–413.

M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Math., Springer-Verlag, New York, 2011.

P. Pérez-Carreras and J. Bonet, Barreled Locally Convex Spaces, North-Holland Mathematical Studies, vol. 131, North-Holland, Amsterdam, 1987. [+]
J. Bonet and B. Cascales, “Non-complete Mackey topologies on Banach spaces,” Bull. Aust. Math. Soc., 81:3 (2010), 409–413.

M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Math., Springer-Verlag, New York, 2011.

P. Pérez-Carreras and J. Bonet, Barreled Locally Convex Spaces, North-Holland Mathematical Studies, vol. 131, North-Holland, Amsterdam, 1987.

P. Civin and B. Yood, “Quasi-reflexive spaces,” Proc. Amer. Math. Soc., 8:5 (1957), 906–911.

J. Diestel, Sequences and Series in Banach Spaces, Graduate Text in Math., vol. 92, Springer-Verlag, New York, 1984.

K. Floret, Weakly Compact Sets, Lecture Notes in Math., vol. 801, Springer-Verlag, Berlin, 1980.

G. Godefroy, “Boundaries of convex sets and interpolation sets,” Math. Ann., 277:2 (1987), 173–184.

R. C. James, “On nonreflexive Banach space isometric with its second conjugate,” Proc. Nat. Acad. Sci. USA, 37 (1951), 174–177.

G. Köthe, Topological Vector Spaces I, Springer-Verlag, New York, 1969.

[-]

This item appears in the following Collection(s)

Show full item record