- -

Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon

Show full item record

Sánchez Diana, LD.; Lechago Buendía, S.; Sanchis Kilders, P. (2015). Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon. Optics Letters. 40(7):1452-1455. https://doi.org/10.1364/OL.40.001452

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65719

Files in this item

Item Metadata

Title: Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon
Author: Sánchez Diana, Luis David Lechago Buendía, Sergio Sanchis Kilders, Pablo
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Issued date:
Abstract:
[EN] Vanadium dioxide (VO2) is a metal-insulator transition (MIT) oxide recently used in plasmonics, metamaterials, and reconfigurable photonics. Because of the MIT, VO2 shows great change in its refractive index allowing ...[+]
Subjects: Integrated optics devices , Polarization-selective devices , Waveguides , Electro-optical materials
Copyrigths: Reserva de todos los derechos
Source:
Optics Letters. (issn: 0146-9592 )
DOI: 10.1364/OL.40.001452
Publisher:
Optical Society of America
Publisher version: http://dx.doi.org/10.1364/OL.40.001452
Project ID:
info:eu-repo/grantAgreement/MINECO//TEC2012-38540/
info:eu-repo/grantAgreement/EC/FP7/ICT-2013-11-619456/EU/
Description: "This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.40.001452. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law"
Thanks:
This work was supported by the European Commission under project FP7-ICT-2013-11-619456 SITOGA. Financial support from TEC2012-38540 LEOMIS is also acknowledged. L. Sanchez also acknowledges the Generalitat Valenciana for ...[+]
Type: Artículo

References

Soref, R., & Larenzo, J. (1986). All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE Journal of Quantum Electronics, 22(6), 873-879. doi:10.1109/jqe.1986.1073057

Jalali, B., & Fathpour, S. (2006). Silicon Photonics. Journal of Lightwave Technology, 24(12), 4600-4615. doi:10.1109/jlt.2006.885782

Manolatou, C., Johnson, S. G., Fan, S., Villeneuve, P. R., Haus, H. A., & Joannopoulos, J. D. (1999). High-density integrated optics. Journal of Lightwave Technology, 17(9), 1682-1692. doi:10.1109/50.788575 [+]
Soref, R., & Larenzo, J. (1986). All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE Journal of Quantum Electronics, 22(6), 873-879. doi:10.1109/jqe.1986.1073057

Jalali, B., & Fathpour, S. (2006). Silicon Photonics. Journal of Lightwave Technology, 24(12), 4600-4615. doi:10.1109/jlt.2006.885782

Manolatou, C., Johnson, S. G., Fan, S., Villeneuve, P. R., Haus, H. A., & Joannopoulos, J. D. (1999). High-density integrated optics. Journal of Lightwave Technology, 17(9), 1682-1692. doi:10.1109/50.788575

Alonso-Ramos, C., Halir, R., Ortega-Moñux, A., Cheben, P., Vivien, L., Molina-Fernández, Í., … Schmid, J. (2012). Highly tolerant tunable waveguide polarization rotator scheme. Optics Letters, 37(17), 3534. doi:10.1364/ol.37.003534

Zhang, H., Das, S., Zhang, J., Huang, Y., Li, C., Chen, S., … Thong, J. T. L. (2012). Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics. Applied Physics Letters, 101(2), 021105. doi:10.1063/1.4734640

Aamer, M., Gutierrez, A. M., Brimont, A., Vermeulen, D., Roelkens, G., Fedeli, J.-M., … Sanchis, P. (2012). CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section. IEEE Photonics Technology Letters, 24(22), 2031-2034. doi:10.1109/lpt.2012.2218593

Komatsu, M., Saitoh, K., & Koshiba, M. (2012). Compact Polarization Rotator Based on Surface Plasmon Polariton With Low Insertion Loss. IEEE Photonics Journal, 4(3), 707-714. doi:10.1109/jphot.2012.2195650

Caspers, J. N., Alam, M. Z., & Mojahedi, M. (2012). Compact hybrid plasmonic polarization rotator. Optics Letters, 37(22), 4615. doi:10.1364/ol.37.004615

Chen, G., Chen, L., Ding, W., Sun, F., & Feng, R. (2013). Ultrashort slot polarization rotator with double paralleled nonlinear geometry slot crossings. Optics Letters, 38(11), 1984. doi:10.1364/ol.38.001984

Nakayama, K., Shoji, Y., & Mizumoto, T. (2012). Single Trench SiON Waveguide TE-TM Mode Converter. IEEE Photonics Technology Letters, 24(15), 1310-1312. doi:10.1109/lpt.2012.2202646

Sánchez, L., & Sanchis, P. (2013). Broadband 8 μm long hybrid silicon-plasmonic transverse magnetic–transverse electric converter with losses below 2 dB. Optics Letters, 38(15), 2842. doi:10.1364/ol.38.002842

Zhang, H., Huang, Y., Das, S., Li, C., Yu, M., Lo, P. G.-Q., … Thong, J. (2013). Polarization splitter using horizontal slot waveguide. Optics Express, 21(3), 3363. doi:10.1364/oe.21.003363

Ding, Y., Liu, L., Peucheret, C., & Ou, H. (2012). Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Optics Express, 20(18), 20021. doi:10.1364/oe.20.020021

Ding, Y., Ou, H., & Peucheret, C. (2013). Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Optics Letters, 38(8), 1227. doi:10.1364/ol.38.001227

Dai, D., & Bowers, J. E. (2011). Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Optics Express, 19(11), 10940. doi:10.1364/oe.19.010940

Xiao, Z., Luo, X., Lim, P. H., Prabhathan, P., Silalahi, S. T. H., Liow, T.-Y., … Luan, F. (2013). Ultra-compact low loss polarization insensitive silicon waveguide splitter. Optics Express, 21(14), 16331. doi:10.1364/oe.21.016331

Chee, J., Zhu, S., & Lo, G. Q. (2012). CMOS compatible polarization splitter using hybrid plasmonic waveguide. Optics Express, 20(23), 25345. doi:10.1364/oe.20.025345

Huang, Y., Zhu, S., Zhang, H., Liow, T.-Y., & Lo, G.-Q. (2013). CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform. Optics Express, 21(10), 12790. doi:10.1364/oe.21.012790

Sun, X., Alam, M. Z., Wagner, S. J., Aitchison, J. S., & Mojahedi, M. (2012). Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Optics Letters, 37(23), 4814. doi:10.1364/ol.37.004814

Alam, M., Aitchsion, J. S., & Mojahedi, M. (2011). Compact hybrid TM-pass polarizer for silicon-on-insulator platform. Applied Optics, 50(15), 2294. doi:10.1364/ao.50.002294

Alam, M. Z., Aitchison, J. S., & Mojahedi, M. (2011). Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer. Optics Letters, 37(1), 55. doi:10.1364/ol.37.000055

Zhoufeng Ying, Guanghui Wang, Xuping Zhang, Ying Huang, Ho-Pui Ho, & Yixin Zhang. (2015). Ultracompact TE-Pass Polarizer Based on a Hybrid Plasmonic Waveguide. IEEE Photonics Technology Letters, 27(2), 201-204. doi:10.1109/lpt.2014.2365029

Avrutsky, I. (2008). Integrated Optical Polarizer for Silicon-on-Insulator Waveguides Using Evanescent Wave Coupling to Gap Plasmon–Polaritons. IEEE Journal of Selected Topics in Quantum Electronics, 14(6), 1509-1514. doi:10.1109/jstqe.2008.926284

Dai, D., Wang, Z., Julian, N., & Bowers, J. E. (2010). Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Optics Express, 18(26), 27404. doi:10.1364/oe.18.027404

Ryckman, J. D., Diez-Blanco, V., Nag, J., Marvel, R. E., Choi, B. K., Haglund, R. F., & Weiss, S. M. (2012). Photothermal optical modulation of ultra-compact hybrid Si-VO_2 ring resonators. Optics Express, 20(12), 13215. doi:10.1364/oe.20.013215

Ruzmetov, D., Gopalakrishnan, G., Ko, C., Narayanamurti, V., & Ramanathan, S. (2010). Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer. Journal of Applied Physics, 107(11), 114516. doi:10.1063/1.3408899

Briggs, R. M., Pryce, I. M., & Atwater, H. A. (2010). Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Optics Express, 18(11), 11192. doi:10.1364/oe.18.011192

Kruger, B. A., Joushaghani, A., & Poon, J. K. S. (2012). Design of electrically driven hybrid vanadium dioxide (VO_2) plasmonic switches. Optics Express, 20(21), 23598. doi:10.1364/oe.20.023598

Ooi, K. J. A., Bai, P., Chu, H. S., & Ang, L. K. (2013). Ultracompact vanadium dioxide dual-mode plasmonic waveguide electroabsorption modulator. Nanophotonics, 2(1). doi:10.1515/nanoph-2012-0028

Chen, S., Yi, X., Ma, H., Wang, H., Tao, X., Chen, M., & Ke, C. (2003). A novel structural VO2micro-optical switch. Optical and Quantum Electronics, 35(15), 1351-1355. doi:10.1023/b:oqel.0000009429.14136.3d

Joushaghani, A., Kruger, B. A., Paradis, S., Alain, D., Stewart Aitchison, J., & Poon, J. K. S. (2013). Sub-volt broadband hybrid plasmonic-vanadium dioxide switches. Applied Physics Letters, 102(6), 061101. doi:10.1063/1.4790834

Ryckman, J. D., Hallman, K. A., Marvel, R. E., Haglund, R. F., & Weiss, S. M. (2013). Ultra-compact silicon photonic devices reconfigured by an optically induced semiconductor-to-metal transition. Optics Express, 21(9), 10753. doi:10.1364/oe.21.010753

Sweatlock, L. A., & Diest, K. (2012). Vanadium dioxide based plasmonic modulators. Optics Express, 20(8), 8700. doi:10.1364/oe.20.008700

Kim, J. T. (2014). CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition. Optics Letters, 39(13), 3997. doi:10.1364/ol.39.003997

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record