Mostrar el registro sencillo del ítem
dc.contributor.author | Crespo-Poveda, A. | es_ES |
dc.contributor.author | Hernandez-Minguez, A. | es_ES |
dc.contributor.author | Gargallo Jaquotot, Bernardo Andrés | es_ES |
dc.contributor.author | Biermann, K. | es_ES |
dc.contributor.author | Tahraoui, A. | es_ES |
dc.contributor.author | Santos, P. V. | es_ES |
dc.contributor.author | Munoz, P. | es_ES |
dc.contributor.author | Cantarero, A. | es_ES |
dc.contributor.author | de Lima, M. M. | es_ES |
dc.date.accessioned | 2016-06-13T09:18:30Z | |
dc.date.available | 2016-06-13T09:18:30Z | |
dc.date.issued | 2015-08-10 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/65721 | |
dc.description | “© 2015 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited" | es_ES |
dc.description.abstract | We demonstrate compact tunable phased-array wavelength-division multiplexers driven by surface acoustic waves (SAWs) in the low GHz range. The devices comprise two couplers, which respectively split and combine the optical signal, linked by an array of single-mode waveguides (WGs). Two different layouts are presented, in which multi-mode interference couplers or free propagating regions were separately employed as couplers. The multiplexers operate on five equally distributed wavelength channels, with a spectral separation of 2 nm. A standing SAW modulates the refractive index of the arrayed WGs. Each wavelength component periodically switches paths between the output channel previously asigned by the design and the adjacent channels, at a fixed applied acoustic power. The devices were monolithically fabricated on (Al, Ga) As. A good agreement between theory and experiment is achieved. | es_ES |
dc.description.sponsorship | The authors thank W. Seidel, and S. Rauwerdink for preparation of the devices. This research has been supported by the international campus of excellence VLC/CAMPUS and by the program INNCIDE from the Spanish Ministry of Economy and Competitiveness (MINECO), through the program "Valoritza i Transfereix" from the Vice-Principal of Research and Scientific Policy of the Universitat de Valencia and through the program INNOVA (grant SP20120860) from the Universitat Politecnica de Valencia. Financial support by the Spanish MINECO Projects TEC2010-21337 and MAT2012-33483 is gratefully acknowledged. A. Crespo-Poveda and B. Gargallo acknowledge financial support through FPI grants BES-2010-036846 and BES-2011-046100, respectively. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America: Open Access Journals | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Acoustically driven arrayed waveguide grating | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.23.021213 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-21337/ES/ADVANCE TOWARDS A MONOLITHICALLY INTEGRATED COHERENT TRANSCEIVER/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2010-036846/ES/BES-2010-036846/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120860/ES/Integrated Optics Optical Spectrum Analyzer/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2011-046100/ES/BES-2011-046100/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-33483/ES/NANOHILOS SEMICONDUCTORES Y DE POLIMEROS CON APLICACIONES EN ENERGIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Crespo-Poveda, A.; Hernandez-Minguez, A.; Gargallo Jaquotot, BA.; Biermann, K.; Tahraoui, A.; Santos, PV.; Munoz, P.... (2015). Acoustically driven arrayed waveguide grating. Optics Express. 23(16):21213-21231. https://doi.org/10.1364/OE.23.021213 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.23.021213 | es_ES |
dc.description.upvformatpinicio | 21213 | es_ES |
dc.description.upvformatpfin | 21231 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 16 | es_ES |
dc.relation.senia | 299119 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | VLC/CAMPUS | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Universitat de València | es_ES |
dc.description.references | Dragone, C. (1991). An N*N optical multiplexer using a planar arrangement of two star couplers. IEEE Photonics Technology Letters, 3(9), 812-815. doi:10.1109/68.84502 | es_ES |
dc.description.references | Talahashi, H., Oda, K., Toba, H., & Inoue, Y. (1995). Transmission characteristics of arrayed waveguide N×N wavelength multiplexer. Journal of Lightwave Technology, 13(3), 447-455. doi:10.1109/50.372441 | es_ES |
dc.description.references | Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370 | es_ES |
dc.description.references | Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587 | es_ES |
dc.description.references | Paiam, M. R., & MacDonald, R. I. (1997). Design of phased-array wavelength division multiplexers using multimode interference couplers. Applied Optics, 36(21), 5097. doi:10.1364/ao.36.005097 | es_ES |
dc.description.references | Nakamura, S., Ueno, Y., & Tajima, K. (2001). Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach–Zehnder-type all-optical switch. Applied Physics Letters, 78(25), 3929-3931. doi:10.1063/1.1379790 | es_ES |
dc.description.references | Wurtz, G. A., Pollard, R., Hendren, W., Wiederrecht, G. P., Gosztola, D. J., Podolskiy, V. A., & Zayats, A. V. (2011). Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotechnology, 6(2), 107-111. doi:10.1038/nnano.2010.278 | es_ES |
dc.description.references | Li, X., Xu, H., Xiao, X., Li, Z., Yu, Y., & Yu, J. (2014). Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Optics Letters, 39(4), 751. doi:10.1364/ol.39.000751 | es_ES |
dc.description.references | Ishii, M., Hibino, Y., Hanawa, F., Nakagome, H., & Kato, K. (1998). Packaging and environmental stability of thermally controlled arrayed-waveguide grating multiplexer module with thermoelectric device. Journal of Lightwave Technology, 16(2), 258-264. doi:10.1109/50.661019 | es_ES |
dc.description.references | Watanabe, T., Ooba, N., Hayashida, S., Kurihara, T., & Imamura, S. (1998). Polymeric optical waveguide circuits formed using silicone resin. Journal of Lightwave Technology, 16(6), 1049-1055. doi:10.1109/50.681462 | es_ES |
dc.description.references | Xiao, G. Z., Zhao, P., Sun, F. G., Lu, Z. G., Zhang, Z., & Grover, C. P. (2004). Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings. Optics Letters, 29(19), 2222. doi:10.1364/ol.29.002222 | es_ES |
dc.description.references | Stabile, R., Rohit, A., & Williams, K. A. (2014). Monolithically Integrated 8 × 8 Space and Wavelength Selective Cross-Connect. Journal of Lightwave Technology, 32(2), 201-207. doi:10.1109/jlt.2013.2290322 | es_ES |
dc.description.references | Asakura, H., Hashimoto, M., Nashimoto, K., Tsuda, H., & Kudzuma, D. (2012). High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating. Electronics Letters, 48(16), 1009-1010. doi:10.1049/el.2012.1292 | es_ES |
dc.description.references | Gorecki, C., Chollet, F., Bonnotte, E., & Kawakatsu, H. (1997). Silicon-based integrated interferometer with phase modulation driven by surface acoustic waves. Optics Letters, 22(23), 1784. doi:10.1364/ol.22.001784 | es_ES |
dc.description.references | De Lima, M. M., Beck, M., Hey, R., & Santos, P. V. (2006). Compact Mach-Zehnder acousto-optic modulator. Applied Physics Letters, 89(12), 121104. doi:10.1063/1.2354411 | es_ES |
dc.description.references | Beck, M., de Lima, M. M., Wiebicke, E., Seidel, W., Hey, R., & Santos, P. V. (2007). Acousto-optical multiple interference switches. Applied Physics Letters, 91(6), 061118. doi:10.1063/1.2768889 | es_ES |
dc.description.references | Beck, M., de Lima, M. M., & Santos, P. V. (2008). Acousto-optical multiple interference devices. Journal of Applied Physics, 103(1), 014505. doi:10.1063/1.2821306 | es_ES |
dc.description.references | Crespo-Poveda, A., Hey, R., Biermann, K., Tahraoui, A., Santos, P. V., Gargallo, B., … de Lima, M. M. (2013). Synchronized photonic modulators driven by surface acoustic waves. Optics Express, 21(18), 21669. doi:10.1364/oe.21.021669 | es_ES |
dc.description.references | Lima, M. M. de, & Santos, P. V. (2005). Modulation of photonic structures by surface acoustic waves. Reports on Progress in Physics, 68(7), 1639-1701. doi:10.1088/0034-4885/68/7/r02 | es_ES |
dc.description.references | Lagali, N. S., Paiam, M. R., & MacDonald, R. I. (1999). Theory of variable-ratio power splitters using multimode interference couplers. IEEE Photonics Technology Letters, 11(6), 665-667. doi:10.1109/68.766778 | es_ES |
dc.description.references | Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474 | es_ES |
dc.description.references | Hill, M. T., Leijtens, X. J. M., Khoe, G. D., & Smit, M. K. (2003). Optimizing imbalance and loss in 2 x 2 3-db multimode interference couplers via access waveguide width. Journal of Lightwave Technology, 21(10), 2305-2313. doi:10.1109/jlt.2003.818164 | es_ES |
dc.description.references | Marcuse, D. (1978). Length optimization of an S-shaped transition between offset optical waveguides. Applied Optics, 17(5), 763. doi:10.1364/ao.17.000763 | es_ES |
dc.description.references | De Lima, M. M., Alsina, F., Seidel, W., & Santos, P. V. (2003). Focusing of surface-acoustic-wave fields on (100) GaAs surfaces. Journal of Applied Physics, 94(12), 7848. doi:10.1063/1.1625419 | es_ES |