- -

Acoustically driven arrayed waveguide grating

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Acoustically driven arrayed waveguide grating

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Crespo-Poveda, A. es_ES
dc.contributor.author Hernandez-Minguez, A. es_ES
dc.contributor.author Gargallo Jaquotot, Bernardo Andrés es_ES
dc.contributor.author Biermann, K. es_ES
dc.contributor.author Tahraoui, A. es_ES
dc.contributor.author Santos, P. V. es_ES
dc.contributor.author Munoz, P. es_ES
dc.contributor.author Cantarero, A. es_ES
dc.contributor.author de Lima, M. M. es_ES
dc.date.accessioned 2016-06-13T09:18:30Z
dc.date.available 2016-06-13T09:18:30Z
dc.date.issued 2015-08-10
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/65721
dc.description “© 2015 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited" es_ES
dc.description.abstract We demonstrate compact tunable phased-array wavelength-division multiplexers driven by surface acoustic waves (SAWs) in the low GHz range. The devices comprise two couplers, which respectively split and combine the optical signal, linked by an array of single-mode waveguides (WGs). Two different layouts are presented, in which multi-mode interference couplers or free propagating regions were separately employed as couplers. The multiplexers operate on five equally distributed wavelength channels, with a spectral separation of 2 nm. A standing SAW modulates the refractive index of the arrayed WGs. Each wavelength component periodically switches paths between the output channel previously asigned by the design and the adjacent channels, at a fixed applied acoustic power. The devices were monolithically fabricated on (Al, Ga) As. A good agreement between theory and experiment is achieved. es_ES
dc.description.sponsorship The authors thank W. Seidel, and S. Rauwerdink for preparation of the devices. This research has been supported by the international campus of excellence VLC/CAMPUS and by the program INNCIDE from the Spanish Ministry of Economy and Competitiveness (MINECO), through the program "Valoritza i Transfereix" from the Vice-Principal of Research and Scientific Policy of the Universitat de Valencia and through the program INNOVA (grant SP20120860) from the Universitat Politecnica de Valencia. Financial support by the Spanish MINECO Projects TEC2010-21337 and MAT2012-33483 is gratefully acknowledged. A. Crespo-Poveda and B. Gargallo acknowledge financial support through FPI grants BES-2010-036846 and BES-2011-046100, respectively. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America: Open Access Journals es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Acoustically driven arrayed waveguide grating es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.23.021213
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-21337/ES/ADVANCE TOWARDS A MONOLITHICALLY INTEGRATED COHERENT TRANSCEIVER/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2010-036846/ES/BES-2010-036846/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20120860/ES/Integrated Optics Optical Spectrum Analyzer/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2011-046100/ES/BES-2011-046100/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-33483/ES/NANOHILOS SEMICONDUCTORES Y DE POLIMEROS CON APLICACIONES EN ENERGIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Crespo-Poveda, A.; Hernandez-Minguez, A.; Gargallo Jaquotot, BA.; Biermann, K.; Tahraoui, A.; Santos, PV.; Munoz, P.... (2015). Acoustically driven arrayed waveguide grating. Optics Express. 23(16):21213-21231. https://doi.org/10.1364/OE.23.021213 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.23.021213 es_ES
dc.description.upvformatpinicio 21213 es_ES
dc.description.upvformatpfin 21231 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 16 es_ES
dc.relation.senia 299119 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder VLC/CAMPUS es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Universitat de València es_ES
dc.description.references Dragone, C. (1991). An N*N optical multiplexer using a planar arrangement of two star couplers. IEEE Photonics Technology Letters, 3(9), 812-815. doi:10.1109/68.84502 es_ES
dc.description.references Talahashi, H., Oda, K., Toba, H., & Inoue, Y. (1995). Transmission characteristics of arrayed waveguide N×N wavelength multiplexer. Journal of Lightwave Technology, 13(3), 447-455. doi:10.1109/50.372441 es_ES
dc.description.references Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370 es_ES
dc.description.references Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587 es_ES
dc.description.references Paiam, M. R., & MacDonald, R. I. (1997). Design of phased-array wavelength division multiplexers using multimode interference couplers. Applied Optics, 36(21), 5097. doi:10.1364/ao.36.005097 es_ES
dc.description.references Nakamura, S., Ueno, Y., & Tajima, K. (2001). Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach–Zehnder-type all-optical switch. Applied Physics Letters, 78(25), 3929-3931. doi:10.1063/1.1379790 es_ES
dc.description.references Wurtz, G. A., Pollard, R., Hendren, W., Wiederrecht, G. P., Gosztola, D. J., Podolskiy, V. A., & Zayats, A. V. (2011). Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotechnology, 6(2), 107-111. doi:10.1038/nnano.2010.278 es_ES
dc.description.references Li, X., Xu, H., Xiao, X., Li, Z., Yu, Y., & Yu, J. (2014). Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Optics Letters, 39(4), 751. doi:10.1364/ol.39.000751 es_ES
dc.description.references Ishii, M., Hibino, Y., Hanawa, F., Nakagome, H., & Kato, K. (1998). Packaging and environmental stability of thermally controlled arrayed-waveguide grating multiplexer module with thermoelectric device. Journal of Lightwave Technology, 16(2), 258-264. doi:10.1109/50.661019 es_ES
dc.description.references Watanabe, T., Ooba, N., Hayashida, S., Kurihara, T., & Imamura, S. (1998). Polymeric optical waveguide circuits formed using silicone resin. Journal of Lightwave Technology, 16(6), 1049-1055. doi:10.1109/50.681462 es_ES
dc.description.references Xiao, G. Z., Zhao, P., Sun, F. G., Lu, Z. G., Zhang, Z., & Grover, C. P. (2004). Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings. Optics Letters, 29(19), 2222. doi:10.1364/ol.29.002222 es_ES
dc.description.references Stabile, R., Rohit, A., & Williams, K. A. (2014). Monolithically Integrated 8 × 8 Space and Wavelength Selective Cross-Connect. Journal of Lightwave Technology, 32(2), 201-207. doi:10.1109/jlt.2013.2290322 es_ES
dc.description.references Asakura, H., Hashimoto, M., Nashimoto, K., Tsuda, H., & Kudzuma, D. (2012). High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating. Electronics Letters, 48(16), 1009-1010. doi:10.1049/el.2012.1292 es_ES
dc.description.references Gorecki, C., Chollet, F., Bonnotte, E., & Kawakatsu, H. (1997). Silicon-based integrated interferometer with phase modulation driven by surface acoustic waves. Optics Letters, 22(23), 1784. doi:10.1364/ol.22.001784 es_ES
dc.description.references De Lima, M. M., Beck, M., Hey, R., & Santos, P. V. (2006). Compact Mach-Zehnder acousto-optic modulator. Applied Physics Letters, 89(12), 121104. doi:10.1063/1.2354411 es_ES
dc.description.references Beck, M., de Lima, M. M., Wiebicke, E., Seidel, W., Hey, R., & Santos, P. V. (2007). Acousto-optical multiple interference switches. Applied Physics Letters, 91(6), 061118. doi:10.1063/1.2768889 es_ES
dc.description.references Beck, M., de Lima, M. M., & Santos, P. V. (2008). Acousto-optical multiple interference devices. Journal of Applied Physics, 103(1), 014505. doi:10.1063/1.2821306 es_ES
dc.description.references Crespo-Poveda, A., Hey, R., Biermann, K., Tahraoui, A., Santos, P. V., Gargallo, B., … de Lima, M. M. (2013). Synchronized photonic modulators driven by surface acoustic waves. Optics Express, 21(18), 21669. doi:10.1364/oe.21.021669 es_ES
dc.description.references Lima, M. M. de, & Santos, P. V. (2005). Modulation of photonic structures by surface acoustic waves. Reports on Progress in Physics, 68(7), 1639-1701. doi:10.1088/0034-4885/68/7/r02 es_ES
dc.description.references Lagali, N. S., Paiam, M. R., & MacDonald, R. I. (1999). Theory of variable-ratio power splitters using multimode interference couplers. IEEE Photonics Technology Letters, 11(6), 665-667. doi:10.1109/68.766778 es_ES
dc.description.references Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474 es_ES
dc.description.references Hill, M. T., Leijtens, X. J. M., Khoe, G. D., & Smit, M. K. (2003). Optimizing imbalance and loss in 2 x 2 3-db multimode interference couplers via access waveguide width. Journal of Lightwave Technology, 21(10), 2305-2313. doi:10.1109/jlt.2003.818164 es_ES
dc.description.references Marcuse, D. (1978). Length optimization of an S-shaped transition between offset optical waveguides. Applied Optics, 17(5), 763. doi:10.1364/ao.17.000763 es_ES
dc.description.references De Lima, M. M., Alsina, F., Seidel, W., & Santos, P. V. (2003). Focusing of surface-acoustic-wave fields on (100) GaAs surfaces. Journal of Applied Physics, 94(12), 7848. doi:10.1063/1.1625419 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem