- -

Multimodal output combination for transcribing historical handwritten documents

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Multimodal output combination for transcribing historical handwritten documents

Show full item record

Granell Romero, E.; Martínez-Hinarejos, C. (2015). Multimodal output combination for transcribing historical handwritten documents. En Computer Analysis of Images and Patterns. Springer. 246-260. doi:10.1007/978-3-319-23192-1_21

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65730

Files in this item

Item Metadata

Title: Multimodal output combination for transcribing historical handwritten documents
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
Transcription of digitalised historical documents is an interesting task in the document analysis area. This transcription can be achieved by using Handwritten Text Recognition (HTR) on digitalised pages or by using ...[+]
Subjects: Document analysis and transcription , Handwritten text recognition , Automatic speech recognition , Confusion Networks combination , Recognition outputs combination
Copyrigths: Reserva de todos los derechos
ISBN: 978-3-319-23117-4
Source:
Computer Analysis of Images and Patterns. (issn: 1611-3349 )
DOI: 10.1007/978-3-319-23192-1_21
Publisher:
Springer
Publisher version: http://link.springer.com/chapter/10.1007/978-3-319-23192-1_21
Conference name: 16th International Conference on Computer Analysis of Images and Patterns (CAIP 2015)
Conference place: Valletta, Malta
Conference date: September 2-4, 2015
Series: Lecture Notes in Computer Science;9256
Project ID: info:eu-repo/grantAgreement/EC/FP7/600707
Description: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23192-1_21
Type: Capítulo de libro Comunicación en congreso

References

Alabau, V., Martínez-Hinarejos, C.D., Romero, V., Lagarda, A.L.: An iterative multimodal framework for the transcription of handwritten historical documents. Pattern Recognition Letters 35, 195–203 (2014)

Bertolami, R., Halter, B., Bunke, H.: Combination of multiple handwritten text line recognition systems with a recursive approach. In: Proc. Int. Conf. Frontiers Handwriting Recognition, pp. 61–65 (2006)

Bisani, M., Ney, H.: Bootstrap estimates for confidence intervals in ASR performance evaluation. In: Proc. of Int. Conf. on Acoustics, Speech and Signal Processing, vol. 1, pp. 409–412 (2004) [+]
Alabau, V., Martínez-Hinarejos, C.D., Romero, V., Lagarda, A.L.: An iterative multimodal framework for the transcription of handwritten historical documents. Pattern Recognition Letters 35, 195–203 (2014)

Bertolami, R., Halter, B., Bunke, H.: Combination of multiple handwritten text line recognition systems with a recursive approach. In: Proc. Int. Conf. Frontiers Handwriting Recognition, pp. 61–65 (2006)

Bisani, M., Ney, H.: Bootstrap estimates for confidence intervals in ASR performance evaluation. In: Proc. of Int. Conf. on Acoustics, Speech and Signal Processing, vol. 1, pp. 409–412 (2004)

Collobert, R., Bengio, S., Mariéthoz, J.: Torch: a modular machine learning software library. Tech. rep., IDIAP-RR 02–46, IDIAP (2002)

Dreuw, P., Jonas, S., Ney, H.: White-space models for offline Arabic handwriting recognition. In: Proc. of Int. Conf. on Pattern Recognition, pp. 1–4 (2008)

Hermansky, H., Ellis, D.P., Sharma, S.: Tandem connectionist feature extraction for conventional HMM systems. In: Proc. of Int. Conf. Acoustics, Speech and Signal Processing, vol. 3, pp. 1635–1638 (2000)

Ishimaru, S., Nishizaki, H., Sekiguchi, Y.: Effect of confusion network combination on speech recognition system for editing. In: Proc. of APSIPA Annual Summit and Conf., vol. 4, pp. 1–4 (2011)

Johnson, D.: ICSI Quicknet soft package (2004). http://www1.icsi.berkeley.edu/Speech/qn.html

Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: Proc. of Int. Conf. Acoustics, Speech and Signal Processing, vol. 1, pp. 181–184 (1995)

Krishnamurthy, H.K.: Study of algorithms to combine multiple automatic speech recognition (ASR) system outputs. Master’s thesis, Department of Electrical and Computer Engineering (2009). http://hdl.handle.net/2047/d10019273

Luján-Mares, M., Tamarit, V., Alabau, V., Martínez-Hinarejos, C.D., Pastor i Gadea, M., Sanchis, A., Toselli, A.H.: iATROS: a speech and handwritting recognition system. In: V Jornadas en Tecnologías del Habla (VJTH2008), pp. 75–78 (2008)

Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J.B., Nadeu, C.: Albayzin speech database: design of the phonetic corpus. In: Proc. of EuroSpeech 1993, pp. 175–178 (1993)

Netpbm home page. http://netpbm.sourceforge.net/

Plamondon, R., Srihari, S.N.: On-Line and Off-Line Handwriting Recognition: A Comprehensive Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 63–84 (2000)

Romero, V., Leiva, L.A., Toselli, A.H., Vidal, E.: Interactive multimodal transcription of text images using a web-based demo system. In: Proc. of Conf. on Intelligent User Interfaces, pp. 477–478 (2009)

Serrano, N., Castro, F., Juan, A.: The RODRIGO Database. In: Proc. of Language Resources and Evaluation Conference, pp. 2709–2712 (2010)

Stolcke, A.: SRILM - an extensible language modeling toolkit. In: Proc. Interspeech, pp. 901–904 (2002)

Woodruff, P., Dupont, S.: Bimodal combination of speech and handwriting for improved word recognition. In: Proc. of EUSIPCO 2005, pp. 1918–1921 (2005)

Xue, J., Zhao, Y.: Improved confusion network algorithm and shortest path search from word lattice. In: Proc. of Int. Conf. in Acoustics, Speech and Signal Processing, vol. 1, pp. 853–856 (2005)

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., et al.: The HTK book (for HTK version 3.4). Cambridge university Eng. Dept. (2006)

Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. Transactions on Information Systems 22(2), 179–214 (2004)

[-]

This item appears in the following Collection(s)

Show full item record