Resumen:
|
[EN] Automated planning is a centralized process in which a single planning entity, or agent, synthesizes a course of action, or plan, that satisfies a desired set of goals from an initial situation. A Multi-Agent System ...[+]
[EN] Automated planning is a centralized process in which a single planning entity, or agent, synthesizes a course of action, or plan, that satisfies a desired set of goals from an initial situation. A Multi-Agent System (MAS) is a distributed system where a group of autonomous agents pursue their own goals in a reactive, proactive and social way.
Multi-Agent Planning (MAP) is a novel research field that emerges as the integration of automated planning in MAS. Agents are endowed with planning capabilities and their mission is to find a course of action that attains the goals of the MAP task. MAP generalizes the problem of automated planning in domains where several agents plan and act together by combining their knowledge, information and capabilities.
In cooperative MAP, agents are assumed to be collaborative and work together towards the joint construction of a competent plan that solves a set of common goals. There exist different methods to address this objective, which vary according to the typology and coordination needs of the MAP task to solve; that is, to which extent agents are able to make their own local plans without affecting the activities of the other agents.
The present PhD thesis focuses on the design, development and experimental evaluation of a general-purpose and domain-independent resolution framework that solves cooperative MAP tasks of different typology and complexity. More precisely, our model performs a multi-agent multi-heuristic search over a plan space. Agents make use of an embedded search engine based on forward-chaining Partial Order Planning to successively build refinement plans starting from an initial empty plan while they jointly explore a multi-agent search tree. All the reasoning processes, algorithms and coordination protocols are fully distributed among the planning agents and guarantee the preservation of the agents' private information.
The multi-agent search is guided through the alternation of two state-based heuristic functions. These heuristic estimators use the global information on the MAP task instead of the local projections of the task of each agent. The experimental evaluation shows the effectiveness of our multi-heuristic search scheme, obtaining significant results in a wide variety of cooperative MAP tasks adapted from the benchmarks of the International Planning Competition.
[-]
[ES] La planificación automática es un proceso centralizado en el que una única entidad de planificación, o agente, sintetiza un curso de acción, o plan, que satisface un conjunto deseado de objetivos a partir de una ...[+]
[ES] La planificación automática es un proceso centralizado en el que una única entidad de planificación, o agente, sintetiza un curso de acción, o plan, que satisface un conjunto deseado de objetivos a partir de una situación inicial. Un Sistema Multi-Agente (SMA) es un sistema distribuido en el que un grupo de agentes autónomos persiguen sus propias metas de forma reactiva, proactiva y social.
La Planificación Multi-Agente (PMA) es un nuevo campo de investigación que surge de la integración de planificación automática en SMA. Los agentes disponen de capacidades de planificación y su propósito consiste en generar un curso de acción que alcance los objetivos de la tarea de PMA. La PMA generaliza el problema de planificación automática en dominios en los que diversos agentes planifican y actúan conjuntamente mediante la combinación de sus conocimientos, información y capacidades.
En PMA cooperativa, se asume que los agentes son colaborativos y trabajan conjuntamente para la construcción de un plan competente que resuelva una serie de objetivos comunes. Existen distintos métodos para alcanzar este objetivo que varían de acuerdo a la tipología y las necesidades de coordinación de la tarea de PMA a resolver; esto es, hasta qué punto los agentes pueden generar sus propios planes locales sin afectar a las actividades de otros agentes.
La presente tesis doctoral se centra en el diseño, desarrollo y evaluación experimental de una herramienta independiente del dominio y de propósito general para la resolución de tareas de PMA cooperativa de distinta tipología y nivel de complejidad. Particularmente, nuestro modelo realiza una búsqueda multi-agente y multi-heurística sobre el espacio de planes. Los agentes hacen uso de un motor de búsqueda embebido basado en Planificación de Orden Parcial de encadenamiento progresivo para generar planes refinamiento de forma sucesiva mientras exploran conjuntamente el árbol de búsqueda multiagente. Todos los procesos de razonamiento, algoritmos y protocolos de coordinación están totalmente distribuidos entre los agentes y garantizan la preservación de la información privada de los agentes.
La búsqueda multi-agente se guía mediante la alternancia de dos funciones heurísticas basadas en estados. Estos estimadores heurísticos utilizan la información global de la tarea de PMA en lugar de las proyecciones locales de la tarea de cada agente. La evaluación experimental muestra la efectividad de nuestro esquema de búsqueda multi-heurístico, que obtiene resultados significativos en una amplia variedad de tareas de PMA cooperativa adaptadas a partir de los bancos de pruebas de las Competición Internacional de Planificación.
[-]
[CA] La planificació automàtica és un procés centralitzat en el que una única entitat de planificació, o agent, sintetitza un curs d'acció, o pla, que satisfau un conjunt desitjat d'objectius a partir d'una situació inicial. ...[+]
[CA] La planificació automàtica és un procés centralitzat en el que una única entitat de planificació, o agent, sintetitza un curs d'acció, o pla, que satisfau un conjunt desitjat d'objectius a partir d'una situació inicial. Un Sistema Multi-Agent (SMA) és un sistema distribuït en el que un grup d'agents autònoms persegueixen les seues pròpies metes de forma reactiva, proactiva i social.
La Planificació Multi-Agent (PMA) és un nou camp d'investigació que sorgeix de la integració de planificació automàtica en SMA. Els agents estan dotats de capacitats de planificació i el seu propòsit consisteix en generar un curs d'acció que aconseguisca els objectius de la tasca de PMA. La PMA generalitza el problema de planificació automàtica en dominis en què diversos agents planifiquen i actúen conjuntament mitjançant la combinació dels seus coneixements, informació i capacitats.
En PMA cooperativa, s'assumeix que els agents són col·laboratius i treballen conjuntament per la construcció d'un pla competent que ressolga una sèrie d'objectius comuns. Existeixen diferents mètodes per assolir aquest objectiu que varien d'acord a la tipologia i les necessitats de coordinació de la tasca de PMA a ressoldre; és a dir, fins a quin punt els agents poden generar els seus propis plans locals sense afectar a les activitats d'altres agents.
La present tesi doctoral es centra en el disseny, desenvolupament i avaluació experimental d'una ferramenta independent del domini i de propòsit general per la resolució de tasques de PMA cooperativa de diferent tipologia i nivell de complexitat. Particularment, el nostre model realitza una cerca multi-agent i multi-heuristica sobre l'espai de plans. Els agents fan ús d'un motor de cerca embegut en base a Planificació d'Ordre Parcial d'encadenament progressiu per generar plans de refinament de forma successiva mentre exploren conjuntament l'arbre de cerca multiagent. Tots els processos de raonament, algoritmes i protocols de coordinació estan totalment distribuïts entre els agents i garanteixen la preservació de la informació privada dels agents.
La cerca multi-agent es guia mitjançant l'aternança de dues funcions heurístiques basades en estats. Aquests estimadors heurístics utilitzen la informació global de la tasca de PMA en lloc de les projeccions locals de la tasca de cada agent. L'avaluació experimental mostra l'efectivitat del nostre esquema de cerca multi-heurístic, que obté resultats significatius en una ampla varietat de tasques de PMA cooperativa adaptades a partir dels bancs de proves de la Competició Internacional de Planificació.
[-]
|