- -

Two-port multimode interference reflectors based on aluminium mirrors in a thick SOI platform

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Two-port multimode interference reflectors based on aluminium mirrors in a thick SOI platform

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez Fandiño, Javier Antonio es_ES
dc.contributor.author Doménech Gómez, José David es_ES
dc.contributor.author Muñoz Muñoz, Pascual es_ES
dc.date.accessioned 2016-06-14T10:13:03Z
dc.date.available 2016-06-14T10:13:03Z
dc.date.issued 2015-08-10
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/65863
dc.description “© 2015 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited" es_ES
dc.description.abstract Multimode interference reflectors (MIRs) were recently introduced as a new type of photonic integrated devices for on-chip, broadband light reflection. In the original proposal, different MIRs were demonstrated based on total internal reflection mirrors made of two deep-etched facets. Although simpler to fabricate, this approach imposes certain limits on the shape of the field pattern at the reflecting facets, which in turn restricts the types of MIRs that can be implemented. In this work, we propose and experimentally demonstrate the use of aluminium-based mirrors for the design of 2-port MIRs with variable reflectivity. These mirrors do not impose any restrictions on the incident field, and thus give more flexibility at the design stage. Devices with different reflectivities in the range between 0 and 0.5 were fabricated in a 3 um thick SOI platform, and characterization of multiple dies was performed to extract statistical data about their performance. Our measurements show that, on average, losses both in the aluminium mirror and in the access waveguides reduce the reflectivities to about 79% of their target value. Moreover, standard deviations lower than +/- 5% are obtained over a 20 nm wavelength range (1540-1560 nm). We also provide a theoretical model of the aluminium mirror based on the effective index method and Fresnel equations in multilayer thin films, which shows good agreement with FDTD simulations. es_ES
dc.description.sponsorship This work was supported by projects TEC2010-21337 (ATOMIC), FEDER UPVOV10-3E-492, FEDER UPVOV08-3E-008, TEC2013-42332-P (PIC4ESP), and PROMETEO 2013/012. The work of J. S. Fandino was supported by Grant FPU-2010 (ref: AP2010-1595). en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Two-port multimode interference reflectors based on aluminium mirrors in a thick SOI platform es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.23.020219
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-21337/ES/ADVANCE TOWARDS A MONOLITHICALLY INTEGRATED COHERENT TRANSCEIVER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPVOV10-3E-492/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2013-42332-P/ES/PHOTONIC INTEGRATED FILTERS FOR ENHANCED SIGNAL PROCESSING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ME//AP2010-1595/ES/AP2010-1595/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//UPVOV08-3E-008/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Sánchez Fandiño, JA.; Doménech Gómez, JD.; Muñoz Muñoz, P. (2015). Two-port multimode interference reflectors based on aluminium mirrors in a thick SOI platform. Optics Express. 23(16):20219-20233. https://doi.org/10.1364/OE.23.020219 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.23.020219 es_ES
dc.description.upvformatpinicio 20219 es_ES
dc.description.upvformatpfin 20233 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 16 es_ES
dc.relation.senia 299118 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Educación
dc.description.references Besse, P. A., Bachmann, M., Melchior, H., Soldano, L. B., & Smit, M. K. (1994). Optical bandwidth and fabrication tolerances of multimode interference couplers. Journal of Lightwave Technology, 12(6), 1004-1009. doi:10.1109/50.296191 es_ES
dc.description.references Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474 es_ES
dc.description.references Besse, P. A., Gini, E., Bachmann, M., & Melchior, H. (1996). New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios. Journal of Lightwave Technology, 14(10), 2286-2293. doi:10.1109/50.541220 es_ES
dc.description.references Domenech, J. D., Fandino, J. S., Gargallo, B., & Munoz, P. (2014). Arbitrary Coupling Ratio Multimode Interference Couplers in Silicon-on-Insulator. Journal of Lightwave Technology, 32(14), 2536-2543. doi:10.1109/jlt.2014.2329994 es_ES
dc.description.references Kwong, D., Covey, J., Hosseini, A., Zhang, Y., Xu, X., & Chen, R. T. (2012). Ultralow-loss polycrystalline silicon waveguides and high uniformity 1x12 MMI fanout for 3D photonic integration. Optics Express, 20(19), 21722. doi:10.1364/oe.20.021722 es_ES
dc.description.references Ortega-Moñux, A., Alonso-Ramos, C., Maese-Novo, A., Halir, R., Zavargo-Peche, L., Pérez-Galacho, D., … Janz, S. (2013). An ultra-compact multimode interference coupler with a subwavelength grating slot. Laser & Photonics Reviews, 7(2), L12-L15. doi:10.1002/lpor.201200106 es_ES
dc.description.references Maese-Novo, A., Halir, R., Romero-García, S., Pérez-Galacho, D., Zavargo-Peche, L., Ortega-Moñux, A., … Cheben, P. (2013). Wavelength independent multimode interference coupler. Optics Express, 21(6), 7033. doi:10.1364/oe.21.007033 es_ES
dc.description.references Chen, H., & Poon, A. W. (2006). Low-Loss Multimode-Interference-Based Crossings for Silicon Wire Waveguides. IEEE Photonics Technology Letters, 18(21), 2260-2262. doi:10.1109/lpt.2006.884726 es_ES
dc.description.references Fan Wang, Jianyi Yang, Limei Chen, Xiaoqing Jiang, & Minghua Wang. (2006). Optical switch based on multimode interference coupler. IEEE Photonics Technology Letters, 18(2), 421-423. doi:10.1109/lpt.2005.863201 es_ES
dc.description.references Hosseini, A., Rahimi, S., Xu, X., Kwong, D., Covey, J., & Chen, R. T. (2011). Ultracompact and fabrication-tolerant integrated polarization splitter. Optics Letters, 36(20), 4047. doi:10.1364/ol.36.004047 es_ES
dc.description.references Hu, Y., Jenkins, R. M., Gardes, F. Y., Finlayson, E. D., Mashanovich, G. Z., & Reed, G. T. (2011). Wavelength division (de)multiplexing based on dispersive self-imaging. Optics Letters, 36(23), 4488. doi:10.1364/ol.36.004488 es_ES
dc.description.references Fukuda, T., Okamoto, K., Hinokuma, Y., & Hamamoto, K. (2009). Phase-Locked Array Laser Diodes (LDs) by Using $1\times N$ Active Multimode-Interferometer (MMI). IEEE Photonics Technology Letters, 21(3), 176-178. doi:10.1109/lpt.2008.2009470 es_ES
dc.description.references Berry, M. V., & Klein, S. (1996). Integer, fractional and fractal Talbot effects. Journal of Modern Optics, 43(10), 2139-2164. doi:10.1080/09500349608232876 es_ES
dc.description.references Kaplan, A. E., Marzoli, I., Lamb, W. E., & Schleich, W. P. (2000). Multimode interference: Highly regular pattern formation in quantum wave-packet evolution. Physical Review A, 61(3). doi:10.1103/physreva.61.032101 es_ES
dc.description.references Azana, J., & Muriel, M. A. (2001). Temporal self-imaging effects: theory and application for multiplying pulse repetition rates. IEEE Journal of Selected Topics in Quantum Electronics, 7(4), 728-744. doi:10.1109/2944.974245 es_ES
dc.description.references Kleijn, E., Smit, M. K., & Leijtens, X. J. M. (2013). Multimode Interference Reflectors: A New Class of Components for Photonic Integrated Circuits. Journal of Lightwave Technology, 31(18), 3055-3063. doi:10.1109/jlt.2013.2278187 es_ES
dc.description.references Cherchi, M., Ylinen, S., Harjanne, M., Kapulainen, M., & Aalto, T. (2015). MMI resonators based on metal mirrors and MMI mirrors: an experimental comparison. Optics Express, 23(5), 5982. doi:10.1364/oe.23.005982 es_ES
dc.description.references Seimetz, M., & Weinert, C.-M. (2006). Options, feasibility, and availability of 2 /spl times/ 4 90/spl deg/ hybrids for coherent optical systems. Journal of Lightwave Technology, 24(3), 1317-1322. doi:10.1109/jlt.2005.863251 es_ES
dc.description.references Pennings, E. C. M., van Roijen, R., van Stralen, M. J. N., de Waard, P. J., Koumans, R. G. M. P., & Verbeck, B. H. (1994). Reflection properties of multimode interference devices. IEEE Photonics Technology Letters, 6(6), 715-718. doi:10.1109/68.300172 es_ES
dc.description.references Kleijn, E., Melati, D., Melloni, A., de Vries, T., Smit, M. K., & Leijtens, X. J. M. (2014). Multimode Interference Couplers With Reduced Parasitic Reflections. IEEE Photonics Technology Letters, 26(4), 408-410. doi:10.1109/lpt.2013.2295624 es_ES
dc.description.references Gordón, C., Guzmán, R., Leijtens, X., & Carpintero, G. (2014). On-chip mode-locked laser diode structure using multimode interference reflectors. Photonics Research, 3(1), 15. doi:10.1364/prj.3.000015 es_ES
dc.description.references Gargallo, B., Muñoz, P., Baños, R., Giesecke, A. L., Bolten, J., Wahlbrink, T., & Kleinjans, H. (2014). Reflective arrayed waveguide gratings based on Sagnac loop reflectors with custom spectral response. Optics Express, 22(12), 14348. doi:10.1364/oe.22.014348 es_ES
dc.description.references Bachmann, M., Besse, P. A., & Melchior, H. (1995). Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting. Applied Optics, 34(30), 6898. doi:10.1364/ao.34.006898 es_ES
dc.description.references Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., & Johnson, S. G. (2010). Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 181(3), 687-702. doi:10.1016/j.cpc.2009.11.008 es_ES
dc.description.references Solehmainen, K., Aalto, T., Dekker, J., Kapulainen, M., Harjanne, M., & Heimala, P. (2006). Development of multi-step processing in silicon-on-insulator for optical waveguide applications. Journal of Optics A: Pure and Applied Optics, 8(7), S455-S460. doi:10.1088/1464-4258/8/7/s22 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem