Mostrar el registro sencillo del ítem
dc.contributor.author | Hueso Pagoaga, José Luís | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Teruel Ferragud, Carles | es_ES |
dc.date.accessioned | 2016-06-16T06:45:18Z | |
dc.date.available | 2016-06-16T06:45:18Z | |
dc.date.issued | 2015-03 | |
dc.identifier.issn | 0259-9791 | |
dc.identifier.uri | http://hdl.handle.net/10251/65999 | |
dc.description | The final publication is available at Springer via https://dx.doi.org/10.1007/s10910-014-0460-8 | es_ES |
dc.description.abstract | [EN] In this work we focus on the problem of approximating multiple roots of nonlinear equations. Multiple roots appear in some applications such as the compression of band-limited signals and the multipactor effect in electronic devices. We present a new family of iterative methods for multiple roots whose multiplicity is known. The methods are optimal in Kung-Traub's sense (Kung and Traub in J Assoc Comput Mach 21:643-651, [1]), because only three functional values per iteration are computed. By adding just one more function evaluation we make this family derivative free while preserving the convergence order. To check the theoretical results, we codify the new algorithms and apply them to different numerical examples. | es_ES |
dc.description.sponsorship | This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia PAID-SP-2012-0474. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Mathematical Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Multiple roots | es_ES |
dc.subject | Convergence order | es_ES |
dc.subject | Efficiency | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Determination of multiple roots of nonlinear equations and applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10910-014-0460-8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120474/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Hueso Pagoaga, JL.; Martínez Molada, E.; Teruel Ferragud, C. (2015). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry. 53(3):880-892. https://doi.org/10.1007/s10910-014-0460-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1007/s10910-014-0460-8 | es_ES |
dc.description.upvformatpinicio | 880 | es_ES |
dc.description.upvformatpfin | 892 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 53 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 295646 | es_ES |
dc.identifier.eissn | 1572-8897 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | H.T. Kung, J.F. Traub, Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974) | es_ES |
dc.description.references | W. Bi, H. Ren, Q. Wu, Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009) | es_ES |
dc.description.references | W. Bi, Q. Wu, H. Ren, A new family of eighth-order iterative methods for solving nonlinear equations. Appl. Math. Comput. 214, 236–245 (2009) | es_ES |
dc.description.references | A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, New modifications of Potra-Pták’s method with optimal fourth and eighth order of convergence. J. Comput. Appl. Math. 234, 2969–2976 (2010) | es_ES |
dc.description.references | E. Schröder, Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870) | es_ES |
dc.description.references | C. Chun, B. Neta, A third-order modification of Newtons method for multiple roots. Appl. Math. Comput. 211, 474–479 (2009) | es_ES |
dc.description.references | Y.I. Kim, S.D. Lee, A third-order variant of NewtonSecant method finding a multiple zero. J. Chungcheong Math. Soc. 23(4), 845–852 (2010) | es_ES |
dc.description.references | B. Neta, Extension of Murakamis high-order nonlinear solver to multiple roots. Int. J. Comput. Math. 8, 1023–1031 (2010) | es_ES |
dc.description.references | H. Ren, Q. Wu, W. Bi, A class of two-step Steffensen type methods with fourth-order convergence. Appl. Math. Comput. 209, 206–210 (2009) | es_ES |
dc.description.references | Q. Zheng, J. Wang, P. Zhao, L. Zhang, A Steffensen-like method and its higher-order variants. Appl. Math. Comput. 214, 10–16 (2009) | es_ES |
dc.description.references | S. Amat, S. Busquier, On a Steffensen’s type method and its behavior for semismooth equations. Appl. Math. Comput. 177, 819–823 (2006) | es_ES |
dc.description.references | X. Feng, Y. He, High order iterative methods without derivatives for solving nonlinear equations. Appl. Math. Comput. 186, 1617–1623 (2007) | es_ES |
dc.description.references | A. Cordero, J.R. Torregrosa, A class of Steffensen type methods with optimal order of convergence. Appl. Math. Comput. doi: 10.1016/j.amc.2011.02.067 | es_ES |
dc.description.references | F. Marvasti, A. Jain, Zero crossings, bandwidth compression, and restoration of nonlinearly distorted band-limited signals. J. Opt. Soc. Am. A 3, 651–654 (1986) | es_ES |
dc.description.references | S. Anza, C. Vicente, B. Gimeno, V.E. Boria, J. Armendáriz, Long-term multipactor discharge in multicarrier systems. Physics of Plasmas 14(8), 082–112 (2007) | es_ES |
dc.description.references | J.L. Hueso, E. Martínez, C. Teruel, New families of iterative methods with fourth and sixth order of convergence and their dynamics, in Proceedings of the 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2013, 24–27 June 2013 | es_ES |
dc.description.references | A. Cordero, J.R. Torregrosa, Low-complexity root-finding iteration functions with no derivatives of any order of convergence. J. Comput. Appl. Math. doi: 10.10016/j.cam.2014.01.024 (2014) | es_ES |
dc.description.references | J.R. Sharma, R. Sharma, Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010) | es_ES |