- -

Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid

Show full item record

Chieregato, A.; Soriano Rodríguez, MD.; García-González, E.; Puglia, G.; Basile, F.; Concepción Heydorn, P.; Bandinelli, C.... (2015). Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid. ChemSusChem. 8(2):398-406. https://doi.org/10.1002/cssc.201402721

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66010

Files in this item

Item Metadata

Title: Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid
Author: Chieregato, Alessandro Soriano Rodríguez, Mª Dolores García-González, Ester Puglia, Giuseppe Basile, Francesco Concepción Heydorn, Patricia Bandinelli, Claudia López Nieto, José Manuel Cavani, Fabrizio
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] Glycerol surplus from biodiesel synthesis still represents a major problem in the biofuel production chain. Meanwhile, those in the acrylic acid market are looking for new processes that are able to offer viable ...[+]
Subjects: Multicomponent mixed oxides bronze , HTB , Crystalline and pseudo-crystalline oxides , One-pot synthesis , Direct transformation of glycerol into acrylic acid
Copyrigths: Cerrado
Source:
ChemSusChem. (issn: 1864-5631 )
DOI: 10.1002/cssc.201402721
Publisher:
Wiley-VCH Verlag
Publisher version: http://dx.doi.org/10.1002/cssc.201402721
Thanks:
The authors from the Instituto Tecnologia Quimica would like to thank the Spanish Government (Project CTQ2012-37925-C03-1 and program Severo Ochoa SEV-2012-0267) for financial support. CIRI Energia e Ambiente ALMA MATER ...[+]
Type: Artículo

References

International Energy Outlook 2013

Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr., J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475-493. doi:10.1016/j.rser.2013.06.017

Gusciute, E., Devlin, G., Murphy, F., & McDonnell, K. (2013). Transport sector in Ireland: can 2020 national policy targets drive indigenous biofuel production to success? Wiley Interdisciplinary Reviews: Energy and Environment, 3(3), 310-322. doi:10.1002/wene.84 [+]
International Energy Outlook 2013

Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr., J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475-493. doi:10.1016/j.rser.2013.06.017

Gusciute, E., Devlin, G., Murphy, F., & McDonnell, K. (2013). Transport sector in Ireland: can 2020 national policy targets drive indigenous biofuel production to success? Wiley Interdisciplinary Reviews: Energy and Environment, 3(3), 310-322. doi:10.1002/wene.84

Kumar, S., Shrestha, P., & Abdul Salam, P. (2013). A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts. Renewable and Sustainable Energy Reviews, 26, 822-836. doi:10.1016/j.rser.2013.06.007

Scharlemann, J. P. W., & Laurance, W. F. (2008). How Green Are Biofuels? Science, 319(5859), 43-44. doi:10.1126/science.1153103

Katryniok, B., Paul, S., & Dumeignil, F. (2013). Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catalysis, 3(8), 1819-1834. doi:10.1021/cs400354p

Lind, A., Rosenberg, E., Seljom, P., Espegren, K., Fidje, A., & Lindberg, K. (2013). Analysis of the EU renewable energy directive by a techno-economic optimisation model. Energy Policy, 60, 364-377. doi:10.1016/j.enpol.2013.05.053

Katryniok, B., Paul, S., Bellière-Baca, V., Rey, P., & Dumeignil, F. (2010). Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, 12(12), 2079. doi:10.1039/c0gc00307g

Katryniok, B., Paul, S., Capron, M., & Dumeignil, F. (2009). Towards the Sustainable Production of Acrolein by Glycerol Dehydration. ChemSusChem, 2(8), 719-730. doi:10.1002/cssc.200900134

Liu, L., Ye, X. P., & Bozell, J. J. (2012). A Comparative Review of Petroleum-Based and Bio-Based Acrolein Production. ChemSusChem, 5(7), 1162-1180. doi:10.1002/cssc.201100447

Cavani, F., Ballarini, N., & Cericola, A. (2007). Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catalysis Today, 127(1-4), 113-131. doi:10.1016/j.cattod.2007.05.009

Wang, F., Xu, J., Dubois, J.-L., & Ueda, W. (2010). Catalytic Oxidative Dehydration of Glycerol over a Catalyst with Iron Oxide Domains Embedded in an Iron Orthovanadate Phase. ChemSusChem, 3(12), 1383-1389. doi:10.1002/cssc.201000245

Deleplanque, J., Dubois, J.-L., Devaux, J.-F., & Ueda, W. (2010). Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 157(1-4), 351-358. doi:10.1016/j.cattod.2010.04.012

Soriano, M. D., Concepción, P., Nieto, J. M. L., Cavani, F., Guidetti, S., & Trevisanut, C. (2011). Tungsten-Vanadium mixed oxides for the oxidehydration of glycerol into acrylic acid. Green Chemistry, 13(10), 2954. doi:10.1039/c1gc15622e

Chieregato, A., Basile, F., Concepción, P., Guidetti, S., Liosi, G., Soriano, M. D., … Nieto, J. M. L. (2012). Glycerol oxidehydration into acrolein and acrylic acid over W–V–Nb–O bronzes with hexagonal structure. Catalysis Today, 197(1), 58-65. doi:10.1016/j.cattod.2012.06.024

Omata, K., Matsumoto, K., Murayama, T., & Ueda, W. (2014). Direct Oxidative Transformation of Glycerol into Acrylic Acid over Phosphoric Acid-added W–V–Nb Complex Metal Oxide Catalysts. Chemistry Letters, 43(4), 435-437. doi:10.1246/cl.131098

Chieregato, A., Soriano, M. D., Basile, F., Liosi, G., Zamora, S., Concepción, P., … López Nieto, J. M. (2014). One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance. Applied Catalysis B: Environmental, 150-151, 37-46. doi:10.1016/j.apcatb.2013.11.045

Shen, L., Yin, H., Wang, A., Lu, X., & Zhang, C. (2014). Gas phase oxidehydration of glycerol to acrylic acid over Mo/V and W/V oxide catalysts. Chemical Engineering Journal, 244, 168-177. doi:10.1016/j.cej.2014.01.051

Pestana, C. F. M., Guerra, A. C. O., Ferreira, G. B., Turci, C. C., & Mota, C. J. A. (2013). Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta. Journal of the Brazilian Chemical Society, 24(1), 100-105. doi:10.1590/s0103-50532013000100014

Witsuthammakul, A., & Sooknoi, T. (2012). Direct conversion of glycerol to acrylic acid via integrated dehydration–oxidation bed system. Applied Catalysis A: General, 413-414, 109-116. doi:10.1016/j.apcata.2011.10.045

Massa, M., Andersson, A., Finocchio, E., Busca, G., Lenrick, F., & Wallenberg, L. R. (2013). Performance of ZrO 2 -supported Nb- and W-oxide in the gas-phase dehydration of glycerol to acrolein. Journal of Catalysis, 297, 93-109. doi:10.1016/j.jcat.2012.09.021

Liu, R., Wang, T., Cai, D., & Jin, Y. (2014). Highly Efficient Production of Acrylic Acid by Sequential Dehydration and Oxidation of Glycerol. Industrial & Engineering Chemistry Research, 53(21), 8667-8674. doi:10.1021/ie403270k

Murayama, T., Kuramata, N., Takatama, S., Nakatani, K., Izumi, S., Yi, X., & Ueda, W. (2012). Synthesis of porous and acidic complex metal oxide catalyst based on group 5 and 6 elements. Catalysis Today, 185(1), 224-229. doi:10.1016/j.cattod.2011.10.029

Weirich, T. E., Portillo, J., Cox, G., Hibst, H., & Nicolopoulos, S. (2006). Ab initio determination of the framework structure of the heavy-metal oxide CsxNb2.54W2.46O14 from 100kV precession electron diffraction data. Ultramicroscopy, 106(3), 164-175. doi:10.1016/j.ultramic.2005.07.002

Nieto, J. M. L., Botella, P., Vázquez, M. I., & Dejoz, A. (2002). The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts. Chem. Commun., (17), 1906-1907. doi:10.1039/b204037a

FIGLARZ, M. (1989). New oxides in the WO3-MoO3 system. Progress in Solid State Chemistry, 19(1), 1-46. doi:10.1016/0079-6786(89)90005-8

Labbe, P. (1992). Tungsten Oxides, Tungsten Bronzes and Tungsten Bronze-Type Structures. Key Engineering Materials, 68, 293-0. doi:10.4028/www.scientific.net/kem.68.293

Salje, E., Gehlig, R., & Viswanathan, K. (1978). Structural phase transition in mixed crystals WxMO1−xO3. Journal of Solid State Chemistry, 25(3), 239-250. doi:10.1016/0022-4596(78)90109-3

Botella, P., López Nieto, J. M., & Solsona, B. (2002). Catalysis Letters, 78(1/4), 383-387. doi:10.1023/a:1014973005107

Cariati, F., Bart, J. C. J., & Sgamellotti, A. (1981). Spectroscopic analysis of mixed valence molybdenum oxides. Inorganica Chimica Acta, 48, 97-103. doi:10.1016/s0020-1693(00)90074-4

Liu, R., Wang, T., Liu, C., & Jin, Y. (2013). Highly selective and stable CsPW/Nb2O5 catalysts for dehydration of glycerol to acrolein. Chinese Journal of Catalysis, 34(12), 2174-2182. doi:10.1016/s1872-2067(12)60666-4

Massa, M., Andersson, A., Finocchio, E., & Busca, G. (2013). Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts. Journal of Catalysis, 307, 170-184. doi:10.1016/j.jcat.2013.07.022

[-]

This item appears in the following Collection(s)

Show full item record