- -

Dynamics of alternative modes of RNA replication for positive-sense RNA viruses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamics of alternative modes of RNA replication for positive-sense RNA viruses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sardanyes Cayuela, Jose es_ES
dc.contributor.author Martinez, Fernando es_ES
dc.contributor.author Daros Arnau, Jose Antonio es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2016-06-20T10:52:15Z
dc.date.available 2016-06-20T10:52:15Z
dc.date.issued 2012-04-07
dc.identifier.issn 1742-5689
dc.identifier.uri http://hdl.handle.net/10251/66167
dc.description.abstract [EN] We propose and study nonlinear mathematical models describing the intracellular time dynamics of viral RNA accumulation for positive-sense single-stranded RNA viruses. Our models consider different replication modes ranging between two extremes represented by the geometric replication (GR) and the linear stamping machine replication (SMR). We first analyse a model that quantitatively reproduced experimental data for the accumulation dynamics of both polarities of turnip mosaic potyvirus RNAs. We identify a non-degenerate transcritical bifurcation governing the extinction of both strands depending on three key parameters: the mode of replication (a), the replication rate (r) and the degradation rate (d) of viral strands. Our results indicate that the bifurcation associated with a generically takes place when the replication mode is closer to the SMR, thus suggesting that GR may provide viral strands with an increased robustness against degradation. This transcritical bifurcation, which is responsible for the switching from an active to an absorbing regime, suggests a smooth (i.e. secondorder), absorbing-state phase transition. Finally, we also analyse a simplified model that only incorporates asymmetry in replication tied to differential replication modes. es_ES
dc.description.sponsorship This work was funded by the Human Frontier Science Program Organization grant RGP12/2008, by the Spanish Ministerio de Ciencia e Innovacion grants BIO2008-01986 (J.A.D.) and BFU2009-06993 (S.F.E.) and by the Santa Fe Institute. F. M. is the recipient of a predoctoral fellowship from Universitat Politecnica de Valencia. We also thank the hospitality and support of the Kavli Institute for Theoretical Physics (University of California at Santa Barbara), where part of this work was developed (grant NSF PHY05-51164).
dc.language Inglés es_ES
dc.publisher Royal Society, The es_ES
dc.relation.ispartof Journal of the Royal Society. Interface es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Complex systems es_ES
dc.subject Intracellular viral dynamics es_ES
dc.subject Nonlinear dynamics es_ES
dc.subject Replication mode es_ES
dc.subject RNA viruses es_ES
dc.subject Systems biology es_ES
dc.title Dynamics of alternative modes of RNA replication for positive-sense RNA viruses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1098/rsif.2011.0471
dc.relation.projectID info:eu-repo/grantAgreement/HFSP//RGP0012%2F2008/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//0551164/US/Kavli Institute for Theoretical Physics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2008-01986/ES/INTERACCIONES RNA-PROTEINA EN EL CICLO INFECCIOSO DE PATOGENOS DE RNA DE PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
dc.description.bibliographicCitation Sardanyes Cayuela, J.; Martinez, F.; Daros Arnau, JA.; Elena Fito, SF. (2012). Dynamics of alternative modes of RNA replication for positive-sense RNA viruses. Journal of the Royal Society. Interface. 9(69):768-776. https://doi.org/10.1098/rsif.2011.0471 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1098/rsif.2011.0471 es_ES
dc.description.upvformatpinicio 768 es_ES
dc.description.upvformatpfin 776 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 69 es_ES
dc.relation.senia 216051 es_ES
dc.identifier.eissn 1742-5662
dc.identifier.pmcid PMC3284139 en_EN
dc.identifier.pmcid PMC3176287 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Human Frontier Science Program Organization
dc.contributor.funder National Science Foundation, EEUU
dc.description.references Endy, D., Kong, D., & Yin, J. (1997). Intracellular kinetics of a growing virus: A genetically structured simulation for bacteriophage T7. Biotechnology and Bioengineering, 55(2), 375-389. doi:10.1002/(sici)1097-0290(19970720)55:2<375::aid-bit15>3.0.co;2-g es_ES
dc.description.references You, L., Suthers, P. F., & Yin, J. (2002). Effects of Escherichia coli Physiology on Growth of Phage T7 In Vivo and In Silico. Journal of Bacteriology, 184(7), 1888-1894. doi:10.1128/jb.184.7.1888-1894.2002 es_ES
dc.description.references Reddy, B., & Yin, J. (1999). Quantitative Intracellular Kinetics of HIV Type 1. AIDS Research and Human Retroviruses, 15(3), 273-283. doi:10.1089/088922299311457 es_ES
dc.description.references Dahari, H., Ribeiro, R. M., Rice, C. M., & Perelson, A. S. (2006). Mathematical Modeling of Subgenomic Hepatitis C Virus Replication in Huh-7 Cells. Journal of Virology, 81(2), 750-760. doi:10.1128/jvi.01304-06 es_ES
dc.description.references Sidorenko, Y., & Reichl, U. (2004). Structured model of influenza virus replication in MDCK cells. Biotechnology and Bioengineering, 88(1), 1-14. doi:10.1002/bit.20096 es_ES
dc.description.references Lim, K., Lang, T., Lam, V., & Yin, J. (2006). Model-Based Design of Growth-Attenuated Viruses. PLoS Computational Biology, 2(9), e116. doi:10.1371/journal.pcbi.0020116 es_ES
dc.description.references Eigen, M., McCaskill, J., & Schuster, P. (2007). The Molecular Quasi-Species. Advances in Chemical Physics, 149-263. doi:10.1002/9780470141243.ch4 es_ES
dc.description.references Krakauer, D. C., & Komarova, N. L. (2003). Levels of selection in positive-strand virus dynamics. Journal of Evolutionary Biology, 16(1), 64-73. doi:10.1046/j.1420-9101.2003.00481.x es_ES
dc.description.references SRIVASTAVA, R., YOU, L., SUMMERS, J., & YIN, J. (2002). Stochastic vs. Deterministic Modeling of Intracellular Viral Kinetics. Journal of Theoretical Biology, 218(3), 309-321. doi:10.1006/jtbi.2002.3078 es_ES
dc.description.references Zhdanov, V. P. (2004). Bifurcation in a generic model of intracellular viral kinetics. Journal of Physics A: Mathematical and General, 37(5), L63-L66. doi:10.1088/0305-4470/37/5/l03 es_ES
dc.description.references Domingo, E., Sabo, D., Taniguchi, T., & Weissmann, C. (1978). Nucleotide sequence heterogeneity of an RNA phage population. Cell, 13(4), 735-744. doi:10.1016/0092-8674(78)90223-4 es_ES
dc.description.references Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral Mutation Rates. Journal of Virology, 84(19), 9733-9748. doi:10.1128/jvi.00694-10 es_ES
dc.description.references MANRUBIA, S., & LAZARO, E. (2006). Viral evolution. Physics of Life Reviews, 3(2), 65-92. doi:10.1016/j.plrev.2005.11.002 es_ES
dc.description.references Sardanyes, J., Sole, R. V., & Elena, S. F. (2009). Replication Mode and Landscape Topology Differentially Affect RNA Virus Mutational Load and Robustness. Journal of Virology, 83(23), 12579-12589. doi:10.1128/jvi.00767-09 es_ES
dc.description.references Thébaud, G., Chadœuf, J., Morelli, M. J., McCauley, J. W., & Haydon, D. T. (2009). The relationship between mutation frequency and replication strategy in positive-sense single-stranded RNA viruses. Proceedings of the Royal Society B: Biological Sciences, 277(1682), 809-817. doi:10.1098/rspb.2009.1247 es_ES
dc.description.references Martínez, F., Sardanyés, J., Elena, S. F., & Daròs, J.-A. (2011). Dynamics of a Plant RNA Virus Intracellular Accumulation: Stamping Machine vs. Geometric Replication. Genetics, 188(3), 637-646. doi:10.1534/genetics.111.129114 es_ES
dc.description.references Denhardt, D. T., & Silver, R. B. (1966). An analysis of the clone size distribution of ΦX174 mutants and recombinants. Virology, 30(1), 10-19. doi:10.1016/s0042-6822(66)81004-8 es_ES
dc.description.references Luria, S. E. (1951). THE FREQUENCY DISTRIBUTION OF SPONTANEOUS BACTERIOPHAGE MUTANTS AS EVIDENCE FOR THE EXPONENTIAL RATE OF PHAGE REPRODUCTION. Cold Spring Harbor Symposia on Quantitative Biology, 16(0), 463-470. doi:10.1101/sqb.1951.016.01.033 es_ES
dc.description.references Chao, L., Rang, C. U., & Wong, L. E. (2002). Distribution of Spontaneous Mutants and Inferences about the Replication Mode of the RNA Bacteriophage  6. Journal of Virology, 76(7), 3276-3281. doi:10.1128/jvi.76.7.3276-3281.2002 es_ES
dc.description.references Marro, J., & Dickman, R. (1999). Nonequilibrium Phase Transitions in Lattice Models. doi:10.1017/cbo9780511524288 es_ES
dc.description.references Elena, S. F., Carrasco, P., Daròs, J.-A., & Sanjuán, R. (2006). Mechanisms of genetic robustness in RNA viruses. EMBO reports, 7(2), 168-173. doi:10.1038/sj.embor.7400636 es_ES
dc.description.references Jockusch, H., Wiegand, C., Mersch, B., & Rajes, D. (2001). Mutants ofTobacco mosaic viruswith Temperature-Sensitive Coat Proteins Induce Heat Shock Response in Tobacco Leaves. Molecular Plant-Microbe Interactions, 14(7), 914-917. doi:10.1094/mpmi.2001.14.7.914 es_ES
dc.description.references Tarazona, P. (1992). Error thresholds for molecular quasispecies as phase transitions: From simple landscapes to spin-glass models. Physical Review A, 45(8), 6038-6050. doi:10.1103/physreva.45.6038 es_ES
dc.description.references Saakian, D. B., Biebricher, C. K., & Hu, C.-K. (2009). Phase diagram for the Eigen quasispecies theory with a truncated fitness landscape. Physical Review E, 79(4). doi:10.1103/physreve.79.041905 es_ES
dc.description.references Sardanyés, J., & Elena, S. F. (2010). Error threshold in RNA quasispecies models with complementation. Journal of Theoretical Biology, 265(3), 278-286. doi:10.1016/j.jtbi.2010.05.018 es_ES
dc.description.references Rodrigo, G., Carrera, J., Jaramillo, A., & Elena, S. F. (2010). Optimal viral strategies for bypassing RNA silencing. Journal of The Royal Society Interface, 8(55), 257-268. doi:10.1098/rsif.2010.0264 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem