- -

Brayton cycle for internal combustion engine exhaust gas waste heat recovery

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Brayton cycle for internal combustion engine exhaust gas waste heat recovery

Show full item record

Galindo, J.; Serrano Cruz, JR.; Dolz Ruiz, V.; Kleut, P. (2015). Brayton cycle for internal combustion engine exhaust gas waste heat recovery. Advances in Mechanical Engineering. 7(6):1-9. doi:10.1177/1687814015590314

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/66302

Files in this item

Item Metadata

Title: Brayton cycle for internal combustion engine exhaust gas waste heat recovery
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Issued date:
Abstract:
An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to ...[+]
Subjects: Brayton cycle , Waste heat recovery , Internal combustion engine , Bottoming cycle
Copyrigths: Reconocimiento (by)
Source:
Advances in Mechanical Engineering. (issn: 1687-8132 ) (eissn: 1687-8140 )
DOI: 10.1177/1687814015590314
Publisher:
Hindawi Publishing Corporation
Publisher version: http://dx.doi.org/10.1177/1687814015590314
Type: Artículo

References

Bredel, E., Nickl, J., & Bartosch, S. (2011). Waste Heat Recovery in Drive Systems of Today and Tomorrow. MTZ worldwide, 72(4), 52-56. doi:10.1365/s38313-011-0042-0

Freymann, R., Strobl, W., & Obieglo, A. (2008). The turbosteamer: A system introducing the principle of cogeneration in automotive applications. MTZ worldwide, 69(5), 20-27. doi:10.1007/bf03226909

Freymann, R., Ringler, J., Seifert, M., & Horst, T. (2012). The Second Generation Turbosteamer. MTZ worldwide, 73(2), 18-23. doi:10.1365/s38313-012-0138-1 [+]
Bredel, E., Nickl, J., & Bartosch, S. (2011). Waste Heat Recovery in Drive Systems of Today and Tomorrow. MTZ worldwide, 72(4), 52-56. doi:10.1365/s38313-011-0042-0

Freymann, R., Strobl, W., & Obieglo, A. (2008). The turbosteamer: A system introducing the principle of cogeneration in automotive applications. MTZ worldwide, 69(5), 20-27. doi:10.1007/bf03226909

Freymann, R., Ringler, J., Seifert, M., & Horst, T. (2012). The Second Generation Turbosteamer. MTZ worldwide, 73(2), 18-23. doi:10.1365/s38313-012-0138-1

Glavatskaya, Y., Podevin, P., Lemort, V., Shonda, O., & Descombes, G. (2012). Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application. Energies, 5(6), 1751-1765. doi:10.3390/en5061751

Song, B., Zhuge, W., Zhao, R., Zheng, X., Zhang, Y., Yin, Y., & Zhao, Y. (2013). An investigation on the performance of a Brayton cycle waste heat recovery system for turbocharged diesel engines. Journal of Mechanical Science and Technology, 27(6), 1721-1729. doi:10.1007/s12206-013-0422-2

Dolz, V., Novella, R., García, A., & Sánchez, J. (2012). HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy. Applied Thermal Engineering, 36, 269-278. doi:10.1016/j.applthermaleng.2011.10.025

[-]

This item appears in the following Collection(s)

Show full item record