- -

Solving nonlinear problems by Ostrowski Chun type parametric families

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving nonlinear problems by Ostrowski Chun type parametric families

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Maimo, J.G. es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Vassileva, M.P. es_ES
dc.date.accessioned 2016-06-23T06:36:47Z
dc.date.available 2016-06-23T06:36:47Z
dc.date.issued 2015-01
dc.identifier.issn 0259-9791
dc.identifier.uri http://hdl.handle.net/10251/66349
dc.description.abstract In this paper, by using a generalization of Ostrowski' and Chun's methods two bi-parametric families of predictor-corrector iterative schemes, with order of convergence four for solving system of nonlinear equations, are presented. The predictor of the first family is Newton's method, and the predictor of the second one is Steffensen's scheme. One of them is extended to the multidimensional case. Some numerical tests are performed to compare proposed methods with existing ones and to confirm the theoretical results. We check the obtained results by solving the molecular interaction problem. es_ES
dc.description.sponsorship This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT, Republica Dominicana. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Mathematical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Iterative schemes es_ES
dc.subject Nonlinear equation es_ES
dc.subject System of nonlinear equations es_ES
dc.subject Divided differences es_ES
dc.subject Optimal es_ES
dc.subject Efficiency index es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving nonlinear problems by Ostrowski Chun type parametric families es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10910-014-0432-z
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cordero Barbero, A.; Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, M. (2015). Solving nonlinear problems by Ostrowski Chun type parametric families. Journal of Mathematical Chemistry. 53(1):430-449. https://doi.org/10.1007/s10910-014-0432-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10910-014-0432-z es_ES
dc.description.upvformatpinicio 430 es_ES
dc.description.upvformatpfin 449 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 291950 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana es_ES
dc.description.references M.S. Petkovic̀, B. Neta, L.D. Petkovic̀, J. Dz̆unic̀, Multipoint Methods for Solving Nonlinear Equations (Academic, New York, 2013) es_ES
dc.description.references M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlinear reaction–diffusion model arising in mathematical chemistry. J. Math. Chem. 51(9), 2361–2385 (2013) es_ES
dc.description.references P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: Formalism and first application to atomic problems. J. Math. Chem. 22, 107–116 (1997) es_ES
dc.description.references C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49, 1384–1415 (2011) es_ES
dc.description.references K. Maleknejad, M. Alizadeh, An efficient numerical scheme for solving hammerstein integral equation arisen in chemical phenomenon. Procedia Comput. Sci. 3, 361–364 (2011) es_ES
dc.description.references R.C. Rach, J.S. Duan, A.M. Wazwaz, Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. J. Math. Chem. 52, 255–267 (2014) es_ES
dc.description.references J.F. Steffensen, Remarks on iteration. Skand. Aktuar Tidskr. 16, 64–72 (1933) es_ES
dc.description.references J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic, New York, 1970) es_ES
dc.description.references H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974) es_ES
dc.description.references J.R. Sharma, R.K. Guha, R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013) es_ES
dc.description.references J.R. Sharma, H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013) es_ES
dc.description.references M. Abad, A. Cordero, J.R. Torregrosa, Fourth- and fifth-order methods for solving nonlinear systems of equations: an application to the Global positioning system. Abstr. Appl. Anal.(2013) Article ID:586708. doi: 10.1155/2013/586708 es_ES
dc.description.references F. Soleymani, T. Lotfi, P. Bakhtiari, A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 8, 1001–1015 (2014) es_ES
dc.description.references M.T. Darvishi, N. Darvishi, SOR-Steffensen-Newton method to solve systems of nonlinear equations. Appl. Math. 2(2), 21–27 (2012). doi: 10.5923/j.am.20120202.05 es_ES
dc.description.references F. Awawdeh, On new iterative method for solving systems of nonlinear equations. Numer. Algorithms 5(3), 395–409 (2010) es_ES
dc.description.references D.K.R. Babajee, A. Cordero, F. Soleymani, J.R. Torregrosa, On a novel fourth-order algorithm for solving systems of nonlinear equations. J. Appl. Math. (2012) Article ID:165452. doi: 10.1155/2012/165452 es_ES
dc.description.references A. Cordero, J.R. Torregrosa, M.P. Vassileva, Pseudocomposition: a technique to design predictor–corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218(23), 1496–1504 (2012) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, M.P. Vassileva, Increasing the order of convergence of iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 252, 86–94 (2013) es_ES
dc.description.references A.M. Ostrowski, Solution of Equations and System of Equations (Academic, New York, 1966) es_ES
dc.description.references C. Chun, Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006) es_ES
dc.description.references R. King, A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, Low-complexity root-finding iteration functions with no derivatives of any order of convergence. J. Comput. Appl. Math. (2014). doi: 10.1016/j.cam.2014.01.024 es_ES
dc.description.references A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton Jarratts composition. Numer. Algorithms 55, 87–99 (2010) es_ES
dc.description.references P. Jarratt, Some fourth order multipoint methods for solving equations. Math. Comput. 20, 434–437 (1966) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, Variants of Newtons method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007) es_ES
dc.description.references Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensens method of fourth-order convergence and its applications. Appl. Math. Comput. 216, 1978–1983 (2010) es_ES
dc.description.references A. Cordero, J.R. Torregrosa, A class of Steffensen type methods with optimal order of convergence. Appl. Math. Comput. 217, 7653–7659 (2011) es_ES
dc.description.references L.B. Rall, New York, Computational Solution of Nonlinear Operator Equations (Robert E. Krieger Publishing Company Inc, New York, 1969) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem